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ABSTRACT: This paper studies in great detail a family of supersymmetric Wilson loop
operators in A/ = 4 supersymmetric Yang-Mills theory we have recently found. For a
generic curve on an S in space-time the loops preserve two supercharges but we will also
study special cases which preserve 4, 8 and 16 supercharges. For certain loops we find
the string theory dual explicitly and for the general case we show that string solutions
satisfy a first order differential equation. This equation expresses the fact that the strings
are pseudo-holomorphic with respect to a novel almost complex structure we construct on
AdSy x S?. We then discuss loops restricted to S? and provide evidence that they can be
calculated in terms of similar observables in purely bosonic YM in two dimensions on the
sphere.
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1. Introduction

The AdS/CFT correspondence [[]-fB relates N = 4 supersymmetric Yang-Mills (SYM)
theory in four dimensions and string theory on AdSs x S°. One calculates quantities at
weak coupling using the gauge theory description and at strong coupling using string theory
techniques, but usually the ranges of validity of the two calculations do not overlap and
one cannot compare the perturbative results with those derived from string theory.

Some notable exceptions to this last statement do exist. For example the Bethe-ansatz
techniques for calculating the anomalous dimensions of local operators have allowed to
interpolate from weak to strong coupling. One particularly striking example are the recent
results on the cusp anomalous dimension [[]-[]. An older example of such an interpolation
is the circular Wilson loop operator, whose expectation value calculated from the gauge
theory point of view seems to be captured by a matrix model [[[0], [[1]]. These results agree
with string calculations including an infinite series of corrections in 1/N [[3-[4]' as well

as some proposed string calculations valid to all orders in 1/4/¢3\N [B4].

Finding such examples is a subtle art-form, and one has to progress by tiny incremental
steps from trivial quantities to more complicated ones. For the spectrum of local operators
the starting point were long supersymmetric operators and their small excitations [F].
Later it was understood that this problem is related to the existence of certain integrable
spin-chains [Pf]. Bethe-ansatz techniques to calculate the spectrum to all loop order in
perturbation theory were then developed and their predictions matched to the computation
of quantum corrections to the semiclassical string result, see [27-B3] and references therein.

While the understanding of Wilson loops is much more fractured, the cases that are
understood have again been obtained by starting with simple examples and generalizing
on them. In the case of the circular loop, it can be related by a conformal transformation
to the trivial straight line, where the difference between them is due to a subtle change in
the global properties of the loop. Then if one considers two local deformations of the line

!For these probe brane computations see also [E,@]? while fully back-reacted geometries dual to Wilson
loops are studied in @7@]



or circle they can be analyzed again using spin-chain techniques [BJ). Another family of
Wilson loops that is well understood was constructed by Zarembo [B4], and can also be
considered as a generalization of the straight line. Like the line, these loops have trivial
expectation values, and we will review them shortly.

In this paper we elaborate on the family of supersymmetric Wilson loops introduced
in [BY, B and on some techniques we can use to compute their expectation values. These
loops are similar to the ones constructed by Zarembo, but their expectation values, in
general, are complicated functions of gyy and N. Instead of generalizing on the straight
line, they may be viewed as generalizations of the circle. As we will show, despite their
complexity, in many cases there are natural guesses for what these functions are. We do
not have yet the full solution for all the loops in this class, but we are optimistic that these
loops reside precisely in that regime where exact calculations are within reach of current
technology. It is also our hope that this construction will lead to further developments
that will allow to calculate more Wilson loop operators and derive more exact results in
the AdS/CFT correspondence.

As further motivation for the study of Wilson loops we would like to mention that there
are some interesting connections between local operators and Wilson loops. One example
is the relation between the cusp anomaly of a light-like Wilson line and the anomalous
dimension of large spin twist-2 operators [B7]-[d]. Quite remarkably light-like Wilson
loops with cusps have also been conjectured by Alday and Maldacena to compute gluon
scattering amplitudes [[7].

In the rest of the introduction we will review the construction of our Wilson loop
operators and provide more details on the proof that they are supersymmetric.

In section f] we will go over some specific examples of families of operators with en-
hanced supersymmetry. The most general case in our class will preserve two supercharges,
but we will show some cases with four, eight and sixteen unbroken supersymmetries. Some
of the information there has already been anticipated in [BJ], but we go over it in much
more detail and include many new results.

Section [ contains the basic characterization of the string duals of our Wilson loops.
Beyond the standard claim that they should be described by semi-classical string solutions,
we find a first-order differential equation satisfied by the strings. This equation is derived
by considering a novel almost complex structure on an AdS, x S? subspace of AdSs x S°.
Requiring that the strings are pseudo-holomorphic with respect to this almost complex
structure leads to the correct boundary conditions on the strings and to preservation of the
expected supersymmetry. The string world-sheets will be interpreted as calibrated surfaces
and their expectation values computed in terms of the integral of the calibration form on
the world-sheet. The results in this section have not been published before.

In section [] we discuss Wilson loops restricted to an 52 subspace of space-time and
provide some evidence, both from the gauge theory and from string theory, that those loops
can be evaluated by a perturbative prescription for two-dimensional bosonic YM expanding
on [B4].

We complete the paper with a series of appendices. In appendix [A] we collect our
conventions for the superconformal algebra while in appendix [Bl we provide all the details for



the computation of the various supergroups preserved by the loops introduced in section [
Appendix [J is dedicated to obtaining the explicit string surfaces in AdSsx S° corresponding
to some of the loops presented in the text. In appendix [D] we review the construction of
the almost complex structure for S? and S® as a warm-up for the discussion of the almost
complex structure relevant to our loops presented in section B.J. Finally, in appendix [{
we present a sample computation in the two-dimensional Yang-Mills theory for our loops
restricted to an S2.

1.1 The loops

The gauge multiplet of N' = 4 SYM includes all fields in the theory: One gauge field,
six real scalars and four complex spinor fields and it is then natural to incorporate them

into the Wilson loop operator. We will consider the extra coupling of the scalars ®! (with
I=1,...,6) so the Wilson loop is [, 9]

W = %Tr Pexpfdt(z’AMﬁc“(t) + |&|e!(t)®!), (1.1)
where x#(t) is the path of the loop and ©'(t) are arbitrary couplings. A necessary re-
quirement for SUSY is that the norm of ©f be one. But that alone leads only to “local”
supersymmetry. If one considers the supersymmetry variation of the loop, then at every
point along the loop one finds another condition for preserved supersymmetry. Only if all
those conditions commute, will the loop be globally supersymmetric.

A simple way to satisfy this is if at every point one finds the same equation. This
happens in the case of the straight line, where £ is a constant vector and one takes also
©! to be a constant. This idea was generalized in a very ingenious way by Zarembo [B4],
who assigned for every tangent vector in R* a unit vector in RS by a 6 x 4 matrix M’ u and
took |#|©7 = M7 ,i#. That construction guarantees that if a curve is contained within a
one-dimensional linear subspace of R* it preserves half of the super-Poincaré symmetries
generated by Q and @Q (see the notations in appendix [f]). Inside a 2-plane it will preserve
1/4, inside R? 1/8 of them, and for a generic curve 1/16. In special cases the loops might
also preserve some of the superconformal symmetries, generated by S and S. We will refer
to these loops often throughout the paper and call them “Q-invariant loops”.

An amagzing fact about those loops is that their expectation values seem to be trivial,
with evidence both from perturbation theory, from AdS and from a topological argu-
ment [B4, b(-[FJ]. This construction can be associated to a topological twist of N = 4
SYM, where one identifies an SO(4) subgroup of the SO(6) R-symmetry group with the
Fuclidean Lorentz group. Under this twist four of the scalars become a space-time vector
¢, = MIHCDI and in the Wilson loop we use a modified connection A4, — A, +i®,,.

The construction we will discuss in the rest of this paper is quite similar to this, but
the expectation value of the Wilson loops will in general be non-trivial. A simple way to
motivate our construction is by considering a different twist, where three of the scalars are
transformed into a self-dual tensor

@, = ol M' @ (1.2)



and the Wilson loop will involve the modified connection
Ay — Ay +i®,,x" . (1.3)

The important ingredient in this construction are the tensors afw. They can be defined
by the decomposition of the Lorentz generators in the anti-chiral spinor representation (7, )
into Pauli matrices 7;

1 y
5(1 - 75)7;w = ZUZwTi, (1.4)
where we included the projector on the anti-chiral representation (7> = —y'42y34%). The

matrix M’} appearing in (L[:2) is 3 x 6 dimensional and is norm preserving, i.e. MM T is the
3 x 3 unit matrix. When we need an explicit choice of M we take My = M?y = M35 =1
and all other entries zero.

These ¢’s are also essentially the same as 't Hooft’s  symbols used in writing down the
instanton solution, which is not surprising, since there the gauge field is self-dual. Finally
another realization of them is in terms of the invariant one-forms on S3

2 [£(22dz® — 2°da?) + (a'da’ — 2'da?)]
gf’L =2 [i(g;?’da:l — 2td2?) + (2'da? — a:zdx‘l)] (1.5)
2

a?’L =2 [£(z'da? — 2°da’) + (2'da® — 2%da")]
where o are the right (or left-invariant) one-forms and ol are the left (or right-invariant)

one-forms (adhering to the conventions of [54]). We chose our construction to rely on the
right-forms (and the anti-chiral spinors) so

oft = ZULV:E“d:L"” . (1.6)
These two realizations of afw will be important in our exposition. The relation to the
spinor representation of the Lorentz group will be crucial for the proof of supersymmetry
and the relation to the one-forms on S will be important for the geometric understanding
and classifications of our loops.

The Wilson loops we study in this paper can then be written in the following two ways,
first in form notation and then explicitly?

W = %Tr Pexp?é <iA + %JfMilq)I) = %Tr Pexp%dm“ (i4, — JZVxVMiI@I) .
(1.7)
One can of course also package the last expression in terms of the modified connection
Ay +i® 2.

Note that this construction involves introducing a length-scale, which can be seen by
the fact that the tensor ([.J) has mass dimension one instead of two. So this construction
would seem to make sense only when we fix the scale of the Wilson loop. Indeed the oper-
ator ([.7) will be supersymmetric only if we restrict the loop to be on a three dimensional

2Tt is tempting to couple the three remaining scalars ®*, ®° and ®° with the left-forms o, however this
in general does not yield a supersymmetric loop.



sphere. This sphere may be embedded in R?, or be a fixed-time slice of S3 x R. We will
always take it to be of unit radius, but it is simple to generalize to other radii by putting
the radius factors where they are required by dimensionality.

1.2 Supersymmetry
We can now show that our ansatz ([.7) leads to a supersymmetric Wilson loop. The
supersymmetry variation of the Wilson loop will be proportional to

SW = (idty, — aiui“:E”Mimes) e(x), (1.8)

where 7, and p! are respectively the gamma matrices of SO(4) and SO(6), the Poincaré
and R-symmetry groups and they are taken to commute with each-other. Note that later
in section B.1], where we discuss the strings in AdSs x S° that describe our loops, we will
use 10-dimensional notations, where all gamma matrices anti-commute. This is achieved
by the simple replacement p’v> — p!. In (L) €(z) is a conformal-Killing spinor given in
R* by two arbitrary constant 16-component Majorana-Weyl spinors as

e(r) =g + aty e . (1.9)

€o is related to the Poincaré supersymmetries while €; is related to the super-conformal
ones.

To simplify the expressions we eliminate the matrix M so there is an implicit choice of
three scalars (using the index ¢ = 1,2, 3). Then, using the fact that z#z# = 1, we rearrange
the variation of the loop as

W =~ itz (yuer + iaiypi7560) —id*z 2y, (Yuweo + iaiypi7561) . (1.10)
Requiring that this variation vanishes for arbitrary curves on S leads to the two equations

€1 +iot pinley = 0,
Tuer ‘f”p.’YE’ (1.11)
Yuv€o +i0,,p" v e = 0.
i
72
representation ([.4). We just need to decompose ¢y and € into their chiral and anti-chiral

These equations are not hard to solve, since o}, are related to <, in the anti-chiral

components (labeled respectively by a + and — superscript) and impose
el = pleg € =¢ =0. (1.12)
To solve this set of equations we can eliminate for example ¢, from ([L13) to get
iTIE] = —pase] , iTo€] = —p31€] , iT3€] = —pi2€] - (1.13)

This is a set of constraints that are consistent with each other. However it is easy to see
that only two of them are independent since the commutator of any two give the remaining
equation. With two independent projectors, we are thus left with two independent com-
ponents of €, while ¢, depends on €, . So we conclude that for a generic curve on S3 the
Wilson loop preserves 1/16 of the original supersymmetries.



For special curves, when there are extra relations between the coordinates and their
derivatives, there will be more solutions and the Wilson loops will preserve more super-
symmetry. We will demonstrate this in some special cases below.

To explicitly find the two combinations of Q and S which leave the Wilson loop invari-
ant, notice that in singling out three of the scalars the R-symmetry group SU(4) is broken
down to SU(2)4 x SU(2)p, where SU(2)4 corresponds to rotations of ®!, ®2 ®3 while
SU(2)p rotates ®*,®5 ®5. Then we recognize that the operators appearing in ([[I3) are
just the generators of SU(2) g, the anti-chiral part of the Lorentz group, and the generators
of SU(2) 4, and the above equations simply state that € is a singlet of the diagonal sum of
SU(2)r and SU(2) 4, while it is a doublet of SU(2) . More explicitly, we can always choose
a basis in which p’ act as Pauli matrices on the SU(2)4 indices, such that the equations
above become

(rf+Mer =0,  k=1,2,3. (1.14)

If we split the SU(4) index in €] as
¥ =ebaa (1.15)

where @ and a are respectively SU(2)4 and SU(2)p indices, then the solution to ([.14) can
be written as
€lqg = Edaeclb’dd. (1.16)

Using any of the equations in ([[.1J) we can determine ¢
— R 3 — R_A_— -
€ =T3p€] =T3'T3€ = —€, (1.17)

where in the last equality we used ([.14). Our conclusion is then that the Wilson loops we
introduced preserve the two supercharges

Q" = (Qd; — Séa) - (1.18)

Besides these fermionic symmetries, our Wilson loop operators obviously preserve the
bosonic symmetry SU(2)p. Using the commutation relations of the superconformal al-
gebra given in (A.I13), it is easy to verify that the above supercharges, together with the
SU(2)p generators Ty, form the following superalgebra

{Qa Qb} — 2Tab
[Tab, Qc] — 8caQb _ %eban, (119)
|:Tab Tcd] — 8cade + gdeac‘

This is an OSp(1]2) subalgebra of the superconformal group.

1.3 Topological twisting

As mentioned from the onset, this construction is related to a topological twisting of N' = 4
SYM. The twisting consists of replacing SU(2)r with the diagonal sum of SU(2)r and



SU(2) 4, which we can denote as SU(2) g/, so that the twisted Lorentz group is SU(2), x
SU2) g

This twisting was first considered in [p§ and further studied in [§ (it is their case
i1)). After the twisting the supercharges decompose under SU(2);, x SU(2)r x SU(2)p as

(2,1,2,2) 4 (1,2,2,2) — (2,2,2) + (1,3,2) + (1,1, 2). (1.20)

From the above it is clear that the two supercharges Q% are in the (1,1,2), and therefore
they become scalars after the twisting. As usual, one would then like to regard them as
BRST charges, and the Wilson loops will be observables in their cohomology.

What is new in our case is that those would-be BRST charges are not made only
out of the Poincaré supersymmetries (), but include also the super-conformal ones S.
Consequently those Q% do not anti-commute, but rather they close on the SU(2)p gener-
ators ([[.19). This is not a major obstacle, in the resulting topological theory one would
have to consider invariance under Q% up to SU(2) g rotations, which is what is done in the
framework of equivariant cohomology.

We will not pursue this direction further here.

2. Examples

We will now present some examples of Wilson loop operators with enhanced supersym-
metry which are special cases of our general construction. Among several new interesting
operators, we will be also able to recover some previously known examples, like the well
studied 1/2 BPS circular Wilson loop [[[{, [[] and the 1/4 BPS circle of [P4], and even a
subclass (those living in a R? subspace) of the Q-invariant Wilson loops [B4] will arise in
a particular “flat limit”. To illustrate the richness of the construction, we will determine
in detail the explicit supersymmetries and various supergroups preserved by the different
examples. The relevant notations and conventions are given in appendix [}, and some tech-
nical details of the calculations are collected in appendix [B. For a comprehensive reference
on superalgebras see for example [57].

2.1 Great circle

We can first show that the well known 1/2 BPS circular Wilson loop is included in our
construction as a special example, this is simply a great circle on the S3. In fact, it is easy
to see that by our construction a maximal circle will couple to a single scalar. For example,
for a circle in the (1,2) plane

x# = (cost,sint,0,0) (2.1)
the pull-back on the loop of the left-invariant one forms ([L.§) appearing in ([L.7) is
1
o =olt=0, Eaé%zdt, (2.2)

so that the corresponding Wilson loop will couple only to ®3. As a consequence, vanishing
of the supersymmetry variation leads to the single constraint

P>y €0 = inzer, (2.3)



and therefore the loop preserves 16 (8 chiral and 8 anti-chiral) combinations of @ and S
and is indeed a 1/2 BPS operator. Using (R.J) we may write down the sixteen supercharges
as

Q4 = in2Q* + (p3S)A ; QO =im2Qa — (p°5) ,, (2.4)
where A = 1,...,4 and for simplicity we have omitted Lorentz indices. Furthermore, it is
not difficult to show that the 1/2 BPS circle also preserves the bosonic group SL(2,R) x
SU(2) x SO(5). Here, the SO(5) C SO(6) simply follows from the fact that the loop couples
to a single scalar. The remaining symmetries SL(2,R) x SU(2) correspond to the subgroup
of the conformal group SO(5,1) which leaves the loop (R.1]) invariant. It is not difficult to
see that the SU(2) factor is generated by

1 1
Li=g(Bs=Ky),  Le=g(Pi-Ky,  Ls=Ja, (2:5)

where P, are translations, K, are special conformal transformations and J,, are Lorentz
generators which can be realized geometrically as

P,=—i0,, K,=—i(2?0, —22,2"0,),  Ju =i(x,0, —x,0,). (2.6)
Finally, the SL(2,R) symmetry is the Moebius group in the (1,2) plane generated by

1
L=g(Pt+K), L=gF+K), L=l (2.7)

N —

All these bosonic symmetries, together with the above supercharges, form the supergroup
OSp(4*]4) (for an explicit calculation of this superalgebra, see for example [5]). Notice
that this is the same supergroup preserved by the 1/2 BPS straight line (although the
explicit realization in terms of generators of PSU(2,2|4) is different). This is of course
expected since a straight line and a circle are related by a conformal transformation (an
inversion).

A 1/2 BPS straight line, being of the class invariant under @, has trivial expectation
value. On the other hand the 1/2 BPS circle is non-trivial. In perturbation theory, using
the Feynman gauge, the combined gauge-scalar propagator between two points along a
loop is a non-zero constant, so that the problem of summing all non-interacting graphs
(ladder diagrams) is captured by the Hermitian Gaussian matrix model [[I(], [[1]

(W) = %/DM %Tr eM exp <—¥TrM2> , (2.8)
where M is an N x N Hermitian matrix and A = g%MN is the 't Hooft coupling. It
was checked in [[(] that interacting graphs do not contribute to order A2, leading to the
conjecture that they may never do so. A more general argument explaining the appearance
of the matrix model was given in [[[]], using the above mentioned fact that the circular loop
is related to the straight line by a conformal transformation. This would naively imply
that both Wilson loops are trivial, however the conformal transformation is singular, and
the difference between the two operators is localized at the singular point, leading then to
a matrix model. Notice however that this argument does not imply that the matrix model



has to be Gaussian, and it is still an open problem to prove that (R.§) fully captures the
VEV of the 1/2 BPS circle. Nonetheless, this conjecture has so far passed an extensive
series of non-trivial tests. For example, the large A, N limit of (B.§) can be matched against
the classical action of a string world-sheet in AdS, and certain 1/N corrections were also
correctly reproduced by D-branes corresponding to Wilson loops in large representations
of the gauge group [[3, [[4, [J. A new possible point of view on the matrix model will be
discussed in section [, where we will argue that all loops inside a great S? ¢ S (including
in particular the 1/2 BPS circle) seem to be related to the analogous observables in the
perturbative sector of two-dimensional Yang-Mills, which can indeed be exactly solved in
terms of the same Gaussian matrix model.

2.2 Hopf fibers

A new interesting system contained in our general construction can be obtained by using
the description of S? as an Hopf fibration, namely as a S' bundle over S2. Explicitly, one
can write the S3 metric as

ds* = — (d0® + sin0°d¢? + (dyp + cos 0 d¢)?) , (2.9)

1
4
where the range of the Euler angles is 0 < § < 7, 0 < ¢ < 27 and 0 < ) < 47. The S!
fiber is parameterized by v, while the base S? by (6, ¢). These coordinates are related to
the cartesian z* by

1_ 0. =9 o _ b0 -9
x~ = —sin = sin ) z° = sin — cos )

2 2 2 2 (2.10)
x?’:cos—sinw—Hb x4:cos€cosw+¢.

2 2 2 2

Consider now a Wilson loop along a generic fiber. This loop will sit at constant (6, ¢),
while v varies along the curve. The fibers are non-intersecting great circles of the S2, so
they will each couple to a single scalar, but the interesting fact is that all the circles in the
same fibration will couple to the same scalar, in this case ®3. An easy way to check this is
to write the left-invariant one forms ([.J) in terms of the Euler angles

0{% = —siny df + cos ¥ sinf do

ot = cos1p df + sintpsin 0 de (2.11)

oft = dip + cos 0 dg .
If # and ¢ are constant and ¥(t) = 2t (with 0 < ¢ < 2m), it follows that along the loop
oft = ot = 0 and %0’:},’% = dt, as in (R.9). An equivalent way to express this fact is that a
fiber only follows the vector field 53},% = Oy dual to 03{%. Since it is a great circle, a single
loop like this is 1/2 BPS and without loss of generality we can take it, as before, to sit in
the (1, 2) plane (i.e. 0 = 7).

The new feature we want to consider is when there is more than a single fiber, with
the other one at (6, ¢). If they are not coincident then the second one will break some of
the symmetry of the single circle. As we shall show, it will project down to the anti-chiral
supercharges and reduce the bosonic symmetries to U(1) x SO(5).

— 10 —



But before we get there, it is instructive to see how the symmetries of the single great-
circle act on the other fiber. The three-sphere is mapped to itself by an SO(4, 1) subgroup
of the conformal group generated by the rotations .J,, and by %(Pu + K,). We have
seen in the previous subsection (R.7) that an SL(2,R) subgroup of this group, obtained by
restricting to pu,v = 1,2, leaves a circle in the (1,2) plane invariant. So while it will not
move the first fiber at § = , this SL(2, R) will act non-trivially on the other fiber.?

To see this explicitly, we write the action of the generators (R.7) in terms of the Euler

angles as
sl —0)/2 (. -
L = z% <Sln089 — cot v 5 ¢(8¢ —&p)) ,
. —¢)/2 (. — .
I, = —1 % <sm939 + tan 2 5 ¢(8¢ — (9,;,)) , (2.12)
I3 = —i(0g — Oy) -

Since all the loops are invariant under 1, we can ignore all the 0, and then the three
generators act as conformal transformations on the base.

These symmetries allow us to map any point on the base (excluding § = 7) to any
other. Therefore, when considering two fibers we can take the second one at 8 = 0, which
means that it lies in the (3, 4) plane.

With this it is easy to check the supersymmetries preserved by the two fibers. The
first circle imposes the constraint (R-3)

0700 = iviaer (2.13)
and analogously the new one (keeping note of the orientation) will impose

pg’y560 = —i73461 s (2.14)

In particular we see that vyi2e; = —734€1, s0 €' is a negative eigenstate of v° = —yly2y3~4,

i.e. it is anti-chiral, so the loops preserve half the supersymmetries of a single circle, or are
1/4 BPS. By the symmetry argument above this is true for any other fiber (or more than
two fibers), which can also be verified directly, by a somewhat tedious calculation.

The corresponding supercharges preserved by the system will be essentially the same
as the ones associated to the 1/2 BPS maximal circle (R.4), except that we only select the
negative chirality

Qa =i12Qa — (p°S) , - (2.15)
As for the bosonic symmetries, notice that of the SL(2, R) x SU(2) x SO(5) symmetry of the
single fiber, the only remaining symmetry on the space-time side that remains is rotations
of the 1) angle

J3t == (12 = Jaa) - (2.16)

N =

Besides this, we have of course the SO(5) symmetry following from the fact that the fibers
only couple to one scalar. These bosonic symmetries form together with the fermionic

3We thank Lance Dixon for suggesting this.
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generators (R.15) the supergroup OSp(2|4), whose even part is indeed SO(2) x Sp(4) =~
U(1) x SO(5). This supergroup can be seen as the subgroup of OSp(4*|4) obtained by
dropping the positive chirality charges in (R.4). From the point of view of the algebra, it
is also natural to understand why the symmetries involving P, and K, are lost for the
Hopf fibers system, as those symmetries arise from commutators of charges in (2.4) with
opposite chirality.

The symmetry argument above allowed us in the case of two circles to move them
relative to each-other. In perturbation theory one finds an even stronger statement, the
combined gauge-scalar propagator between any two points on any two fibers is the same
constant as for the single circle.

Consider for example the propagator between a point z#(t; 6y, ¢g) on one fiber and a
point y#(s;01,¢1) on a second fiber. Since both circles only couple to ®3, the propagator
is

<(Z it A () + cI>"(f€)> (Z A (y) + <I>b(y)>> _wlodg 6% = e 5%, (2.17)

I3 3 I3 3 4n2 (z —y)2 872 ’
as can be checked using the explicit parametrization (R.1(). Thus this system of non-
intersecting circles on S® is reminiscent of the BPS system of parallel straight lines in
flat space. In that case the lines do not interact between each other (the propagators
vanish) and the observable is trivial. Here we find that the fibers do interact, however the
“interaction strength” is just a constant independent of the relative distance.

Since the propagator is a constant, all ladder diagrams contributing to the correlator
of several Hopf fibers can be exactly summed up using the same Gaussian matrix model
describing the 1/2 BPS circle, but with a different insertion compared to (P.§). Concretely,
for a system made of k fibers, the ladder diagrams contribution will be equal to

(Wh)iadders = <<%T1" €M>k> , (2.18)

where the expectation value on the right hand side is taken in the Gaussian matrix model
as in (2.§). Of course it would be an interesting non-trivial calculation to also evaluate
the contribution (if any) of diagrams with internal vertices. At large N the correlator
in (R.1§) will be the same as k non-interacting circles and will be reproduced at strong
coupling by k disconnected string surfaces in AdS. An interesting problem, which we will
not further pursue here, would be to study the possible contribution of the connected string
configuration in AdS.

2.3 Great S?

An infinite subfamily of operators which turns out to be very interesting is obtained by
restricting the loop to lie on a great S? inside S®. For concreteness, we may define this
two-sphere by the condition z* = 0. From the definition of the invariant one forms one can
see that on this maximal S? the left and right forms are no longer independent, rather

of = —off = —2¢;a7 da® (2.19)
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which can also be written as a cross-product. Then it is not difficult to realize that ([[.1()
has more solutions. Using that the left forms are related to the action of the Lorentz
generators on positive chirality spinors
i
data¥ et = 5 olrlet, (2.20)

L' = —6F implies that ([LI() is solved not only by the antichiral spinors

the relation o
satisfying
el = pieg (2.21)

(2

but also by positive chirality spinors obeying
thel = —pied (2.22)
Combining the two chiralities, this can be also written as
iYjkEL = sijk,ow‘r’eo. (2.23)

So, contrary to the general S case in ([.L13), we see that now the constraints are not chiral
and hence the supersymmetries are doubled. The generic Wilson loop on $? will therefore
give a 1/8 BPS operator. One can solve the constraints in the same way as described in
section [.9, but we will now get two copies of the solution, one for each chirality. The four
supercharges may be written explicitly as

Q" = (imp)% (QA + 95%), Q=& (Qhs — Sii) - (2.24)

The bosonic symmetry is also enlarged compared to the generic curve on S°. In fact,
besides invariance under the group SU(2)p C SO(6) which rotates ®* ®5, ®5, there is an
extra U(1) symmetry generated by

% (Py— Ky) (2.25)

which follows from the fact that the loops satisfy z* = 0. The presence of this extra
symmetry may be also understood from the algebra of the supercharges. In fact, one can
see that anticommuting charges of opposite chirality precisely produces the U(1) genera-
tor (R.2§). In appendix B.1] we give a detailed derivation of the algebra generated by these
symmetries and prove that it is a SU(1]|2) superalgebra. The even part of this superalge-
bra is U(1) x SU(2)p and the four fermionic generators transforming as 2% + 2~ under
the even symmetries can be obtained by defining appropriate linear combinations of the
supercharges (2.24).

A generic smooth curve on S? exhibits a curious property, whose precise significance
would be interesting to explore in more depth: The gauge coupling for that curve is given,
using vector notation in R?, by Z while from (B-19) the scalar coupling is the cross-product
Z x Z. If we take |] = 1, then Z x Z is also a vector on S? and we can consider Wilson
loops along that path in space-time. The corresponding scalar coupling will be

<fxf>x<fxf>:—f<f-fx§)o<f. (2.26)
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The proportionality constant & x # is non-zero if the curve is nowhere a geodesic (i.e. it
is never part of a great circle). We see then that for any smooth, nowhere geodesic curve
on S? there is a dual curve with gauge and scalar coupling interchanged.* In section B.4
we comment on the extension of this map to the dual AdSs x S°. Only on the boundary
is it a map between AdSs and S®, otherwise it mixes the coordinates in a somewhat more
complicated way (see (B.6§) and the discussion after it).

In the following subsections we discuss some examples of special loops inside S? pre-
serving some extra supersymmetries. The case of the general loops belonging to this class
is presented in great detail in section ], where we provide evidence that they are related
to Wilson loops in two-dimensional Yang-Mills theory.

2.3.1 Latitude

Taking the loop to be at the equator of the S? will clearly give the 1/2 BPS circle described
in section .. More generally we can take the loop to be a non-maximal circle, i.e. a latitude
of the S2. Concretely, we can parameterize the loop as

xt = (sinfgcost,sinfysint, cos by, 0). (2.27)

Computing the scalar couplings for this curve according to (R.19)

% O'Z-R = Eijkxj dz* = sin 0o(— cos b cost, — cosBysint,sinby) dt, (2.28)
one can see that they also describe a latitude on the S? C S® associated to ®!, ®2, ®3, but
the circle sits at /2 — 6y, see figure fl. In particular, when the loop is a maximal circle,
0y = 7/2, the curve in scalar space reduces to a point (the north pole) and one falls back
to the 1/2 BPS circle described in section R.1].

This family of loops is essentially the same as the operators considered in [B4]: The
operator we describe here and the one in [B4] are simply related by a conformal transfor-
mation (a dilatation and a translation along %) which moves the circle from the equator
to a parallel.®

As can be seen from (R.2§), such an operator couples to three scalars, but it can
be shown that the supersymmetry equations will give only two independent constraints.
Indeed, one can see that the supersymmetry variation vanishes at every point along the
loop provided that the following two conditions are satisfied

cos by (’712 + p12)61 =0, (2.29)
p*y’e0 = [in12 + 737 cos Op (723 + pas)] e - (2.30)

If cosfy # 0, one has two independent constraints and the loop preserves 1/4 of the
supersymmetries. In the special case cosfly = 0 the first constraint disappears and one
recovers the 1/2 BPS maximal circle condition (R.3).

1t is possible to extend this to curves with sections that are geodesic, in the dual loops they will manifest
themselves as cusps (and vice-versa).
5Also compared to [@] 0o is replaced here by 7/2 — 6.
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a.

Figure 1: Quarter-BPS Wilson loop along a latitude. In a. we show the Wilson loop along a
latitude at angle fy on an S? C R*. b. depicts the scalar couplings which follow a dual latitude on
S2? C S°. Notice that if we took b. to be the path of the loop in space, then a. would describe the
associated scalar couplings. This is an explicit example of the duality between scalar and gauge
field couplings discussed in the text.

One may solve the constraints (.30) as described in section [.q by viewing ~; and p;
as Pauli matrices acting on Lorentz and SU(2) 4 indices respectively. In particular, the first
line in (R.3() may be written as

(—imz +73)er = 0. (2.31)

For a generic loop we had three such equations (for the anti-chiral spinor), which meant
that the only solution had to be a singlet of the diagonal SU(2)g + SU(2)4 group. Here
we find only one such equation for each of the chiralities, such that a U(1) charge (r5°%!)
has to vanish. So in addition to the singlet, this constraint allows one of the states of the
triplet. Explicitly, we can write the two solutions of (R.31)) as
o 61,2[1 = (Z.TQ).aa Etll,c'm (2‘32)
€l,a = El,Qa + Ei,ia = (Tl)aa 6?,[1a7
and similarly for the other chirality. The ¢y spinors can be obtained by solving the second
line of the constraints. For the singlet spinor egl), the term proportional to cosfy does
not contribute and the solution is the same as the one for the great S loops given in

equation (2.24), that is
Q= (im2)% (Q4 + 557) Oty = e (Qs — F44) - (2.33)
As for the solutions corresponding to €; (3), because of the 3 in the term proportional to

cos B, the second constraint in (R.30)) will relate €y of a given chirality to a combination of
€1’s of both chiralities. Explicitly one can write the resulting conserved supercharges as

a 1 aa (o qa . e aa aa
oy = e (189)™ (Qha — Sa) + cot b0 (im2)"% (6" = 557)
1 , ) o ~ (2.34)
Qff = g () QB+ 52) + cott = (Q + %)
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The bosonic symmetries preserved by this loop turn out to be SU(2) x U(1) x SU(2)p.
Besides the obvious SU(2) g symmetry, the other SU(2) is essentially equivalent to the SU(2)
preserved by the maximal circle (R.5), except that one should conjugate those generators
by a dilatation and a translation along 3 which will move the circle from the equator
to a latitude. The resulting generators are similar to (B.), but they are 6y dependent
and now involve also the dilatation generator D. The explicit expressions are given in
appendix B.2, where we present the detailed calculation of the superalgebra associated to
this Wilson loop. The remaining U(1) symmetry mixes Lorentz and R-symmetry and is
given by the combination Jis + Jl‘%, where Jﬁ is the generator of SU(2)4 rotating ®; and
®,. This follows from the fact that the loop coordinates 2% and the scalar couplings ([L.5)
satisfy the equation x20fz — xlaf = 0. In B.Z we show that the eight supercharges and
these bosonic generators can be organized to form a SU(2|2) superalgebra.

This example is particularly interesting because it turns out that in perturbation theory
the combined gauge-scalar propagator is also constant, and it is equal to the one for 1/2
BPS circle with the simple rescaling g%,M — g%,M sin? 6 [B4. This led to the conjecture that
this 1/4 BPS Wilson loop is also captured by the matrix model (B.§) with a rescaling of the
coupling constant. The AdS string solution dual to this operator is explicitly known, as
reviewed in appendix [C.1], and its classical action perfectly agrees with the strong coupling
limit of the matrix model result. An explicit D3 solution describing the Wilson loop in a
large symmetric representation was also found in [[[3], where it was shown again agreement
with the matrix model, including all 1/N corrections at large A. More details on these
results and the implications for the conjectured relation of the S? loops to 2d Yang-Mills
are discussed in section [

2.3.2 Two longitudes

A further example of a family of 1/4 BPS Wilson loops that are also a special case of
loops on a great S? can be obtained as follows. Consider a loop made of two arcs of
length 7 connected at an arbitrary angle 4, i.e. two longitudes on the two-sphere. We can
parameterize the loop in the following way

xH = (sint, 0, cost, 0), 0<t<m,

- = 2.35
at = (—cosdsint, —sindsint, cost, 0), m<t<2m. ( )

The corresponding Wilson loop operator will couple to ®2 along the first arc and to
—®2cosd + ®'siné along the second one, see figure . Notice that such an operator is
related by a stereographic projection to a Wilson loop of the type invariant under Q [B4
given by two semi-infinite rays on the plane with an opening angle §. Using this observation
we were able to construct the explicit dual string solution for this Wilson loop, which is
presented in appendix [C.9.

It is straightforward to study the supersymmetry variation of this operator. Each arc,
being (half) a maximal circle, is 1/2 BPS and will produce a single constraint

First arc: p2’y5eo = i7v31€1,

2.36
Second arc:  (p?y° cos§ — p'yS sind)eg = (731 cOS S — Vo3 8in d)ey . (2.36)
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a. —

Figure 2: Quarter-BPS Wilson loop made of two longitudes. In a. we show the loop on S? C R*
obtained by taking two half circles, or longitudes, with opening angle §. The corresponding scalar
couplings in b. turn out to be two points on the equator of S? C S° separated by an angle m — 6.

Combining the two equations, we see that the system has to satisfy, as long as sind # 0,
P°VPeq = i3ier p'YPeq = iyaser . (2.37)

These constraints are of course consistent and therefore the loop will preserve 1/4 of the
supersymmetries. When sind = 0, the second equation in (R.37) disappears and the loop
becomes 1/2 BPS (in the case § = m, it is just the maximal circle discussed above, while in
the case § = 0, the loop is made of two coincident half circles with opposite orientations).
No further supersymmetries will be broken when one adds more circles or half-circles that
all intersect at the north and south poles.
To solve the above constraints, we can proceed as usual by first eliminating ¢;. This
gives the equation
(—i’ylg + T§4)61 =0, (2.38)

which is the same equation encountered for the latitude discussed in the previous subsec-
tion. The two solutions for positive chirality are given in (P.32) and similarly one can get
the negative chirality ones. From the equation p?~°ey = iv31€; one can then get the two
solutions for € as

€o,1) = 7 €1,1) » €0,2) = —7€1,(2) - (2.39)

Thus the eight supercharges which annihilate the Wilson loop made of two longitudes are
Q) = (im2)% (Qa" +53%) . Q= (1)% (@& — 55%),

Sa aa (Aa aa Aa aa [ Aa aa (240)
by =¢ (Q%a — S&) Q) = (73¢) (Q4s + Sia) -

The loop also preserves the bosonic symmetry group U(1) x U(1) x SO(4). The SO(4) C
SO(6) factor simply comes from the fact the this loop only couples to ®; and ®5 so that we
are free to rotate ®3, 4 ®5 ®6. To understand the U(1)? symmetry, one can look at what
are the compatible symmetries of two circles in the (1,3) and (2,3) planes. Recalling our
discussion of the great circle, one can see that there are two shared symmetry generators,
namely (P; — K4) and (P; + K3). These two generators commute and give a U(1)?
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symmetry.® These bosonic symmetries, together with the eight supercharges (P.4(), form
the direct product superalgebra SU(1]2) x SU(1]2), as we show in appendix B.3.

2.4 Hopf base

Consider a curve parameterized by the Euler angles # and ¢, which form the base of the
Hopf fibration (R.9). A family of loops with enhanced supersymmetry can be obtained if
along the fibers we choose

W(t) = — /0 dt’ (') cos O(F') (2.41)

which guarantees that the pull-back of 031? along the loop vanishes, see (), so the
operator will only couple to ®' and ®2. A generic curve of this form will break all the
chiral supersymmetries, and for the anti-chiral ones will introduce the constraints

PP =Tae . ple =Tier . (242)

This is the anti-chiral part of equation (2.37), and consequently the loop will preserve the
anti-chiral supersymmetries in (R.40)

0% = (Qha — %), Oy = (138)** (Q% + 5%) - (2.43)
Therefore such operators are 1/8 BPS.

The example of the two longitudes is a special case of these loops where the entire
loop is contained within an S2, so in addition to the four anti-chiral supercharges (2.43),
it also preserves four chiral supercharges. To relate them explicitly, note that among the
Euler angles only 6 varies along the two arcs of (R.35) while ¢ and 1) are kept fixed with
Yv+o=m P+ ¢=3wor Y+ ¢=>om.

The equation for v (R.41]) leads to an integral condition, namely that the loop is closed.
It can actually be restated in a nice way as a condition on the area bound by the loop on
the base

2m
/d¢ df sin 6 = /0 dt d(t) (1 — cos 0(t)) = ¢(2m) + 9 (27). (2.44)

Since v has period 47 and so does ¥ + ¢, we deduce from this equation that the area bound
by the curve should be quantized in units on 4.

The bosonic symmetry preserved by such a loop is just the SO(4) rotating ®3, ®*, ®°
and ®5. The superalgebra will be the same as the one of the Wilson loop made of two
longitudes, but restricted to the antichiral sector. Defining linear combinations as in (|B.15),
one obtains the same algebra given in ([B.16), the only difference being the we should use
the negative chirality. It is easy to see that this is an OSp(1]|2) x OSp(1]|2) superalgebra.
Notice that a diagonal subgroup of this algebra is just the OSp(1]|2) preserved by all our
loops.

SThroughout we studied the symmetries only at the level of the algebra, so we are not distinguishing
between U(1) and R.
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2.4.1 Latitude on the base

As mentioned before, the longitudes discussion in section are also special examples of
loops on the Hopf base.

Beyond this example we found one simple family of loops in this class to which we
have explicit string solutions. They are given by taking a latitude curve on the Hopf base

¢ =kt, 0 =16, 0<t<2m, (2.45)

where in general we have allowed a multiply wrapped latitude with winding k. From
equation (R.41) it follows that 1 is also linear in ¢

Y = —ktcosbp. (2.46)

The periodicity of ¥ implies that k cos 8y should be an integer such that the area above the
loop on the base is a multiple of 4.

Let us take £ = k1 + ko and kcosOyp = ki — k. Then in terms of the Cartesian
coordinates (R.10)) this curve is

Ik Ik Ik Ik
P fsinkzlt, 22 = %coskzlt, z° = %Sink’gt, zt = %cosk‘gt. (2.47)

This is a motion on a torus inside S? where the curve wraps the two cycles k; and ko times.
In general (see section P.§ and appendix [C.J) one could take any torus inside 53, but the
extra conditions for loops on the Hopf base require the ratio of the lengths of the cycles to
be \/ko/ki. If k1 = ko this is a (multiply wrapped) circle.

The scalar couplings for these loops turn out to be quite simple,

1

1
5 oft = \/kiky cos(ky — ky )t dt, 5 ol = \/kiky sin(ky — k)t dt, (2.48)

so we just have a periodic motion, as in the case of the latitude on the great S? in sec-
tion (and taking the limit when the curve approaches the north-pole).

Since the path of this loop in R* is periodic, the dual string solution describing it
can be found by using the techniques of [BY]. The detailed calculation is presented in
appendix [C.3, where the action of the surface in AdSs x S describing a generic toroidal
loop is computed. For the application to the latitude discussed in this section, we can use
all the expressions from the general case of [C.d with the replacement

sin%0 = % , (:os%0 = % . (2.49)
Going over the calculation one sees that many of the expressions simplify and the final
result for the action ([C.64), where without loss of generality we have chosen ky < ko, is

S=-— (2k1 - J@) V. (2.50)

It would be very interesting to see if the expectation value of the loop could possibly
be computed exactly in gauge theory and compared at strong coupling with this string
calculation.
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2.5 More toroidal loops

As mentioned in the last subsection, the tools used for calculating the loops associated with
latitudes on the Hopf base can immediately be applied to general doubly-periodic loops on
any torus in S3.

We take the curve to be of the form

z' = sin = sinkq ¢, z? = sin = cos kqt ,
(2.51)
3 0 4 4
T :COS§SIHk2t, x :cosicoskgt.
The scalar couplings for these loops are also simple,
1 ki1+k
3 oft = ! ; 2 sin @ cos(kg — k1)t dt,
1 ki1+k
3 ol = ! ; 2 sin @ sin(ky — k1)t dt, (2.52)
1 0 . o0
3 J§ = <k‘2 cos? 3~ ky sin? 5) dt.

Those expressions are similar to the ones for the latitude on S? in section R.3.1. The string
solution dual to these loops is presented in appendix [C.3.

Let us just comment that these loops are a natural generalization of the latitudes on
the Hopf base, in the same way that the 1/4 BPS latitude generalized the @-invariant loops
of B4]. Here too, compared with (R.4§) there is an extra constant coupling to the third
scalar ®3.

It is tempting to guess that these loops arise by considering other S? spaces inside S,
where the equation for ¢ (B-4])) is modified by the constant u to

= —pcosbo, (2.53)

Such a construction would in turn lead to these general toroidal loops with

0 JRao(T+p) — k(1 —p)
51n§—\/ 2 2]{#1 . (2.54)

While it is clear that those loops, like all the others we constructed, preserve 2 super-
charges, we have not substantiated whether they preserve some extra supersymmetries. If
80, it would be interesting to identify the general curve with those supersymmetries, since
those curves might give interpolating families between the Hopf base and the great S2.
As an indication that this might work, note that for ko(1 — ) — k1(1 + ) = 0 this is
again the great circle and when ks = 0, we end up with the latitude on the maximal S? of

section R.3.1.

2.6 Infinitesimal loops

We conclude our list of examples by showing that in a particular flat limit we can recover
from our construction a subclass of the loops of [B4]. If a loop is concentrated entirely
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near one point, say z* = 1, one will not see the curvature of the sphere anymore. More
precisely, we can take a limit in which we send the radius of S® to infinity while keeping
the size of the loop fixed, so that we end up with a curve on flat R3. In this limit the left
and right forms will then become exact differentials

ot v 2de;, i=1,2,3, (2.55)

so the Wilson loop ([L.7) will reduce to
1 , :
W = NTr Pexp?édx’ (i4; + @) . (2.56)

This is indeed a subclass of the Q-invariant loops constructed by Zarembo in [B4] where the
curve is restricted to be on R3. Studying the supersymmetry variation of such operator one
can see that generically it will only preserve two combinations of Poincaré supersymmetries
defined by the constraints

(v —ip'y°) €0 =0, i=1,2,3. (2.57)

If the curve is restricted further to lie only in a 2-plane or a line near z* = 1, the super-
symmetry will be further enhanced. For certain shapes, like a straight line or a circle on
the plane, also combinations of superconformal supersymmetries may be preserved.

This should explain why in this case the expectation value of these loops is trivial. The
planar loops come from infinitesimal ones on S3, so it is quite natural that their expectation
values is unity. This might also explain why the construction of the D3-brane solution dual
to the Wilson loop in this limit was singular [13].

3. Wilson loops as pseudoholomorphic surfaces

After going over the construction of the supersymmetric Wilson loops and presenting many
examples, expanding on [@], in this part of the paper we will present completely new results
on the general string solutions dual to those Wilson loops. Their underlying geometry will
turn out to be surprisingly simple and associated to the existence of an almost complex
structure, which we will call 7, on the subspace of AdS5 x S° in which the string solutions
dual to the loops live. As we shall show, the string surfaces satisfy the “pseudo-holomorphic
equations” associated to this almost complex structure which are a simple generalization of
the usual Cauchy-Riemann equations one encounters in complex geometry. An analogous
picture for the class of Q-invariant Wilson loops was proposed in [6J]. As already mentioned
in the field theory discussion, see section P.6, these latter loops are trivial in the sense that
their expectation value is expected to be identically one. On the other hand we know that
the expectation value of the loops constructed in this paper is non-trivial. We will show
that the loop expectation value receives a nice geometrical interpretation in terms of the
integral on the string world-sheet of the fundamental two-form associated to 7.

For the reasons just mentioned it will be useful to begin this section by reviewing
the concept of a pseudo-holomorphic surface.” Let ¥ be a two-dimensional surface with

"For a comprehensive discussion see @]
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complex structure® JO‘B, (o, B =1,2), embedded in a space M with almost complex structure
J J}/IV This surface is said to be pseudo-holomorphic if it satisfies

VM =9, XM — k gN 1 505X N =0. (3.1)

The possible choices K = £1 correspond to (pseudo)holomorphic and anti-holomorphic
embeddings. In our discussion we will assume x = 1. These equations are a natural
generalization of the Cauchy-Riemann equations on the complex plane, to which they
reduce when we identify 3 and M with R? and use the standard complex structure

0-1
J:j:(l 0) (3.2)

The solutions of the pseudo-holomorphic equations (B.1]) are surfaces calibrated by J.
Indeed if we introduce the positive definite quantity

1
P = Z/ VI 9P GunV VY (3.3)
b
and expand P we obtain
P:A(E)—/JZO (3.4)
b

where A(Y) is the area of the surface ¥ and J denotes the pull-back of the fundamental
two-form 1
J =5 Jun dXM A adxV. (3.5)

For a pseudo-holomorphic surface P = 0, and one concludes that

A() = /E 7. (3.6)

Note that if J is closed, its integral is the same for all surfaces in the same (relative)
homology class and then the bound in (B.4) applies to them all. Therefore a string surface
calibrated by a closed two-form is necessarily a minimal surfaces in its homology class.

In our context the ambient space will be a subspace of AdSs x S° and ¥ will be
the string world-sheet on which the complex structure can be expressed in terms of the
world-sheet metric g, and the flat epsilon symbol e (see (A.J)) as

Ja = Lea(gg(sﬁ. (3.7)
bV

The AdS dual description of the @-invariant loops was found in [f2]. The loops are
constructed by associating to every tangent vector in R* one of the scalars, in a way
related to the topological twisting of an SO(4) subgroup of the R-symmetry group and the
Euclidean Lorentz group.

When thinking of a D3 in flat ten dimensional space this leads to a natural association
of the four coordinates parallel to the brane and four of the transverse directions. Taking

8 An almost complex structure on a two-dimensional surface is always integrable @]
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the near-horizon limit of the metric after accounting for the brane’s back-reaction leads to
AdSs x S° in the Poincaré patch with coordinates (a;“, y™, ul) with g, m =1,2,3,4 and
i = 1,2 and metric

ds® = (y2 + u2) dztdxt +

dy™dy™ + du'dut) | 3.8
the corresponding string solutions live in the u’ = const. subspace.
It is now natural to relate the coordinates z# and y™ with u = m with the closed

2-form

1
J = 5JunN dXM N AXYN = 8, dat A dy™, (3.9)

as it is invariant under the twisted group. It is easy to see that J J‘j{, squares to minus the
identity and therefore it defines an almost complex structure on the relevant subspace of
AdS5 x S°. The string solutions dual to these loops turn out to be pseudo-holomorphic
surfaces with respect to this almost complex structure and satisfy

(y* +u*)0“xH — Jaﬁaﬁymaﬁn =0. (3.10)

Since the two-form J is closed, they are minimal calibrated surfaces with (divergent) world-
sheet area given by (B.6). Using the closure of the calibration two-form J it is immediate
to re-express the integral of J as a contour integral on the world-sheet boundary obtaining

A(D) = %/dt!a‘;\, (3.11)

where the formally divergent integral has been regularized by computing it at z = €. The
classical action S.(X) is the finite part of the world-sheet area and therefore vanishes,
implying that the Wilson loops have trivial expectation value

(W) = e VASa@)/2m _ 1 (3.12)

Despite the existence of this beautiful structure, the only explicit solutions known are the
straight line and the 1/4 BPS circle, which is the limit of the latitude when 6y — 0 (see
section R.3.1). In appendix [C.d we construct another explicit solution for a loop in this
class. This loop is made of two rays in the plane at arbitrary opening angle and is related
to the longitudes example of section by a stereographic projection (figure [i).

In the rest of this section we will see that it is possible to extend these ideas to the class
of supersymmetric Wilson loops presented in section [l Those loops follow an arbitrary
path on S3 and couple to three scalars, parameterizing an S2. Therefore they will be
described by a string ending along a path in an S3 x S? on the boundary of AdS5 x S°.

For a generic curve on R* or S* the string may extend into all of AdSs, but when it is
restricted to R? or S2, it will remain inside an AdS, subspace. Likewise we assume? that

9For a curve coupling to two scalars and wrapping S* C S® the solution will have to extend into S? C S5,
for topological reasons. This is indeed the case for the circular @Q-invariant loop [@] and our assumption is
that a similar phenomenon does not occur with boundary data in S% x S2.
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the string will remain inside the S? C S, so the full solution will reside inside an AdSy x S?

subspace which we label by X. This assumption will be later justified by proving that the

solutions to the pseudo-holomorphic equation in this subspace are extrema of the action.
The metric we employ is (p =1,...,4,i=1, 2, 3)

1 o
ds* = — dxtdzt + 22dy'dy’ 2= (3.13)
z
subject to the constraint
2?4 22 =1, a? = ghah. (3.14)

We will see that the string solutions dual to the loops are pseudo-holomorphic with respect
to an almost complex structure J on X which we construct next. The fundamental two-
form associated to J will turn out to be not closed suggesting the interpretation of our
loops as “generalized calibrated submanifolds”. We will also argue that the non-closure of
J seems to be related to the fact that the loops have non-trivial expectation values.

3.1 Almost complex structure on AdS; x S?

We want to motivate the construction of the almost complex structure relevant to the AdS
description of the generic loops on S by taking the supersymmetry conditions derived in
field theory as our starting point, see ([.L11)). They can be summarized as

Vo € = —107,,fi € (3.15)

or equivalently as

VoPi €] = —i0,,Yu € (3.16)
where (v, p;) denote seven of the 10-dimensional (flat) anti-commuting gamma matrices'®
and afw denote the components of the left-invariant one-forms on S3 ([.f). We can also

express the algebra of the SU(2) 4 rotating the three scalars (and y*) as'!

ﬁij 60_ = _iEijkﬁk 66 . (317)

The almost complex structure 7 in the dual string side is ultimately expected to
encode all these conditions. We can rewrite these relations in terms of curved-space gamma
matrices!? T'yy = (), T) = (2719, 2 p;) (remembering (LI7) that ¢, = —€;) as

_ . N —
_ . N — ’
zlvieg =i T\ Ineg
with
w2 4 v _ 4 71 2 i { _ 2
T =20, Tisn==2Tvu =2 0y jik = TF Eijks (3.19)

1075 make them anti-commute they are related to the field-theory gamma matrices in @) by pi = pin°.

"The extra minus sign is due to v°.

2The indices M, N include all seven directions, but to avoid ambiguities we will never substitute their
values for them, only for u, v and 4, j.
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8

and with all the other components of J ]]\\Q; p vanishing. We can interpret (B.1§) as a
multiplication table for the curved gamma matrices acting on e3: The product of two
gamma matrices is re-expressed in terms of another gamma matrix J ]J\(/[; pl'n. In fact, this
multiplication table up to factors of z is basically the octonion multiplication table, which
can be regarded as a higher dimensional generalization of the usual cross-product in R3.
We present it in appendix [ and review how it can be used to define an almost complex
structure on the round 6-sphere. In analogy to (D.1() it is then natural to introduce the
following matrix

TN =T%. p XF, (3.20)

where M and N denote row and column indices respectively. From (B.19) and (B.2() we
can read the various components of

J = <‘7/’£ jlj) , (3.21)

T, jij
to be
T = 2 O',iw yia Jh = —Z4jiy =22 O',Z',M x, jlj = _Z2Eijk yk . (3.22)
Explicitly
0 y3 —y2 —n —T4 —T3 T2
2| U 0 v -y 2| @3 T4
y2 —y1 0 —ys3 —To T1 —T4
J = vioy2 yz 0 1 Ty T3 . (3.23)
T4 —T3 To —T1 0 —ys yo
272 w3 w4 —m — 2 ys 0 —uy
—To T1 T4 —T3 —y2 y1 O

To show that J defines an almost complex structure on X = AdSs x S?, note that a
generic tangent vector pM = (p1,p2,P3,D4,41, 92, q3) in T'X satisfies the condition

zipt — Ayl =0, (3.24)

which comes from differentiating the constraint 22 + 22 = 1. Then it is easy to see that
J %pM is still a tangent vector so that J is a well defined map on the tangent space T'X.
Furthermore if we consider the action of J2 we obtain an expression very similar to what
one gets for S? (see (D.4) in appendix [[J) and with the aid of (B:24) one finds that

T*(p) = —p. (3.25)

Therefore J defines an almost complex structure on X = AdS, x S2.

As in the case of the almost complex structure for the strings dual to the Q-invariant
loops (B.9), our almost complex structure J reflects the topological twisting associated
to our loops. As discussed in section [I.3, this twisting reduces the product of the groups
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SU(2)r and SU(2) 4 to their diagonal subgroup SU(2)gs which is then regarded as part of
the Lorentz group. This can be seen directly from our construction as J%, is given by the
contraction of the components of the one-forms O’iR with the y* coordinates on which the
SU(2) 4 group acts. Similar remarks can be made for the [J?, sub-block. At a more formal
level the twisting manifests itself through the condition

which simply expresses the invariance of ¢y under the twisted SU(2)z action
(O'fw'ﬁw + 5ijkﬁjk) €g =0. (3.27)

Since this almost complex structure captures those properties of our Wilson loops, we
expect the string solutions describing the Wilson loops in AdSs x S° to be compatible with
it, i.e. that the world-sheet is pseudo-holomorphic with respect to J. We do not have a
proof of this, but in the remainder of this section we will study such pseudo-holomorphic
surfaces and show that their properties match with the expected behavior of the string
duals.

In order to write the pseudo-holomorphic equations associated to J we introduce the
vector XM = (x1, 29,3, 24,91, Y2,¥3) in X and the equations are

TNOXN — \/gead° XM = 0. (3.28)

For brevity in the following we will refer to the pseudo-holomorphic equations (B.2§) as the
J-equations. As we will show, surfaces satisfying those equations are supersymmetric and
are classical solutions of the string action.

It is possible to repackage three of the J-equations in form notation as

22

. 1 . , ,

*2dy7/:@0.7,+?,’72, Z:1,2,3. (329)
On the left-hand side we used the Hodge dual with respect to the world-sheet metric and
on the right-hand side we used the pull-backs to the world-sheet of the one-forms (we use

the same notations for the forms and their pull-backs)

ol = 2(xo dxs — x3dre + 4 dry — 1 dTy),
ol = 2(1’3 dr1 — x1dxs + T4 dry — 29 da;4) , (330)
ol = 2(x1 dxg — o dry + 24 dxs — x3dTy),

which are defined in the same way as the right-forms on S® ([.5) but we extend the definition
to arbitrary radius. The other forms are the pull-backs of the SU(2) 4 currents

n" = 2(y2dys — y3 dy2) ,
n? = 2(y3 dy; — y1 dys) (3.31)
n° =2(y1dy2 —y2dy1) .
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We will try to show that the J equations are satisfied by the strings dual to the
supersymmetric loops on S3. As a first support for this claim consider the asymptotic
form of the surface near the boundary of AdSs;. As we approach the boundary, taking z
to zero, z# as well as y'/y approach constants, given by the boundary conditions. In the
conformal gauge we denote the two world-sheet directions as n and ¢, normal and tangent
to the boundary respectively. It can be shown in general [F1] that |0,z = |0:x|. In our
case we can take (B.29) which in the z — 0 limit reduces to

. 1 .
Ony" =~ 5.2 02" Oz . (3.32)
Given that vy scale as 27! we get
ol o’
2yt~ WWW (3.33)

The left-hand side represents the boundary conditions on the S?, which exactly match the
scalar couplings of the Wilson loop ([[.7) captured by the right-hand side.

Another way to see this is by looking at (B.23), where in the z — 0 limit, as we
approach the AdSs, the lower-left sub-matrix 7%, dominates. The entries in this sub-block
are the components of the forms UZR which define the coupling of the scalars ®° to the
Wilson loop operator in the field theory. Therefore we can view J as the natural bulk
extension of those couplings.

Lowering the indices of the almost complex structure we obtain an antisymmetric

tensor Jun. We can therefore introduce the following fundamental two-form'3
1 M N_ 1 i 45 i L, i
jzijMNdX NdX =Y (da—zdn)—gcr Ady'. (3.34)

where the one-form o' and 7' were defined in (B:30) and (B-31). Later in section B.g we
will discuss our string as surfaces calibrated by J. For now we limit ourselves to observe
that this is not a standard calibration as J is not closed

1 . .
A7 =~ dy® A dot + 24 dyy A dys A dys. (3.35)

Written out explicitly dJ reads4
—dyldxgg — dyldx41 — dygdxgl — dygda:42 — dygdajlg — dygdx43 + z4dy123 N (336)

which is remarkably similar to the expression of associative three form preserved by the
exceptional group Ga, see (ID.19).

The non-closure of J for a calibrated string is unusual and raises the issue of whether
the solutions of the J-equations are automatically solutions of the o-model. To prove that

BFor symbol economy we will use the same symbol 7 to denote both the almost complex structure and
the associated fundamental two-form. It will always be clear from the context what 7 refers to.

Mpor brevity in what follows we omit the A symbol and use the notation dx,, = dz, A dx, and dyi23 =
dyi N dyz A dys.
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this is indeed the case, we consider the equations of motion for the o-model in AdS5 x S?
(the equations of motion for the extra three coordinates in S° are automatically satisfied
by setting them to constants)

Vo (Gun0“XY) = 0y (Guno*XN) - %8MGPN&XXP8“XN =0 (3.37)

with metric Gy as in (B.13) and V,, denoting the pull-back of the covariant derivative
with respect to Gary. We now show that the equations of motion for the x* and ¥
coordinates are satisfied once we assume that the string lives in the AdS; x S? subspace
and is a solution of the J equations. Using the J-equations we can write the equations of
motion for z* and y° as

1
PO, X5 xN <aijN ~ 5 0mGor j%) =0. (3.38)
When M = yu the second term in (B.3§) does not contribute and it is very easy to see that
this condition is indeed satisfied. For M = 4, on the other hand, the left hand side of (B.33)

becomes after switching to form notation

(do' — z*dn") (5“€ - z2yiyk) . (3.39)

N —

This expression vanishes since, by using the J equations and the orthogonality condition
xhdxt — zYyidy' = 0, one can show after some algebra that

do® — Z4dn' = 2y GunO. XM xVN 2o . (3.40)
3.2 Supersymmetry

A good check that the solutions of the J-equations describe our Wilson loops comes from

studying the supersymmetries preserved by those strings. In this subsection we will prove

that strings satisfying those equations are indeed supersymmetric and are invariant under

precisely the same supercharges which annihilate the dual operator on the field theory side.
The x-symmetry condition for a fundamental string is

(V="70, XM 95X N Tasy = i Grn0a XM 0 XN ) enas = 0, (3.41)

where €aqg is the AdS5 x S° Killing spinor. The most convenient form for the Killing spinor
is 69
1 .

€EAdS = ﬁ (60 +z (:E“Fu - ylfi) 61) , (3.42)
where €y and ¢ are constant 16 component Majorana-Weyl spinors. In fact they are the
exact analogues of the spinors representing the Poincaré and conformal supersymmetries
in the dual A = 4 theory ([.9), as can be seen by going to the AdS boundary where €aq4g
reduces to

1
€AdS ™ 7 (€0 + zHyu€1). (3.43)
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To prove (B.41)) we first use the J-equations and rewrite the term multiplying epqs as
XM XN (TENTMTp — iGun) = 0° X Tp 9, XM (TMyTn —iTwr) - (3.44)

It will therefore be enough to prove
XM (TNyTn —iTar) €aas = 0. (3.45)

This equation should be satisfied by the same supersymmetry parameters as in the gauge-
theory calculation in section [[.3. They were all collected in (B:I§) in terms of the compo-
nents of 7. Using first that g = —ey, the left-hand side of (B.4H) becomes (switching to

form notation)
idXM (—iXP TN pTiveo + 2 (##Tarp — y'Tari) €o)

. 3.46
—idXM (Tareo — i2X P TNy, py (29T — y'T5) €0) - (3.46)

The terms in the first line vanish once we impose on ¢y and €; the conditions in (B.1§).
Using that x2 + 22 = 1 and that z#da* — z*y'dy’ = 0 allows to prove that also the terms
in the second line vanish.

Beyond allowing us to prove s-symmetry, equation (B.45) is quite interesting in its own
right. First multiplying it by'® 0; XVT'y gives

0: XM XM epas, (3.47)
which holds because of the Virasoro constraint. Multiplying by 0, X" Ty leads to
—Z'azXMagXN (Tyn +Gun)eags =0, (3.48)

which is the x symmetry condition rewritten in the z,z basis. We also observe that, by
using the pseudo-holomorphic equations, one can recast the condition (B.45) simply as

9: XMT preaas = Tz enas = 0, (3.49)
where I's is the pull-back to the world-sheet of the gamma matrices.

3.3 Wilson loops and generalized calibrations

In this section we will discuss the string dual to our Wilson loops from the point of view
of calibrated submanifolds. More precisely we will argue that the natural geometrical
description of the corresponding string solutions is in the context of “generalized calibra-
tions” [pd—[H].!1® The main result is that the classical action of the strings (and hence
the expectation value of the loops) is given by the integral on the world-sheet of the fun-
damental two-form 7. This is because, as discussed in the introduction of section f], the
world-sheet area of a pseudo-holomorphic surface ¥ can be computed by integrating the

pull-back of the fundamental two-form 7 (B.34),

A(S) = /2 7. (3.50)

159; = 0y — 107, 0> = 05 + 0.
63ee also @] for a general discussion on calibrations.
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This equation suggests that our loops can be viewed as two-dimensional calibrated sub-
manifolds with the two-form 7 as calibration. As already observed this is not a standard
calibration though as the fundamental two-form 7 is not closed, see (B.3).

Without worrying about this issue for now, note that it is possible to rewrite the
two-form J as a sum of two contributions

T = Jo+d9) (3.51)

with

1 .. . o
Jo = ~2 y' (do* + 24d77’) , Q=—=y'o" (3.52)

Using Stokes theorem the world-sheet area is then

A(E):/Ejo—i— @ (3.53)

This expression is generically divergent and requires regularization. It can be seen by
studying the asymptotics near the boundary z ~ 0 (see the discussion around (B.32)) that
the contribution of 7 is finite.

The integral of Q is therefore divergent, but this is exactly the divergence that needs
to be subtracted from the area. To see that we again use the manipulations as in (B.39) to
rewrite it as

1 o 1 .
Q= —/ dty'o,,x"Opx” = ——/ dt /g 220"y" . (3.54)
2 Jox g 2 Jox

Here dt is the line element tangent to the boundary and 9™ the normal derivative. The last

[)))

expression is an integral over the momentum P, conjugate to the coordinates y*, which in
turn can be related to P,, the momentum conjugate to z. Therefore we can rewrite

Q:—/ dty' P, :/ dtz P, . (3.55)
0% 0% ox

The rigorous procedure to get a finite answer for the Wilson loops is by a Legendre trans-
form over the radial coordinate z [G1]. It will therefore precisely cancel the entire contri-
bution of €.

The AdS/CFT prediction for the expectation value of the Wilson loop in the strong

coupling regime is then
VA
2 . 3.56
exp ( g (356)
We can go further and derive a simpler expression for Jy. Applying the d operator on

equation (B.29) yields

) . 1 ) )
(do' + 2*dn") + 3 dz*n' — d(2% %2 dy') = 0. (3.57)

N =

Taking the inner product of this equation with y* we derive the following relation for Jp

1. .
Jo=—51" d(2* % dy"). (3.58)
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By writing y* = 0°/z with 6'0° = 1, J can be proven to be equal to
1 . . 2
—5v9 <9@ V20— %) Ao (3.59)

where V2 is the world-sheet Laplacian. The regularized area can therefore be written in a
rather simple form as

) 2
/ Jo =1 / &o\/g (aaei 90" 4 2) , (3.60)
) 2 /s z

or equivalently

1 - c 1
3 / d*o\/g <8a62 040" + o) Doz 0%z + V?log z) . (3.61)
by
The last term can also be rewritten as a boundary term
1 1 Oy 2
. *logz == [ dr—. .62
2/2 o/gV~<log z 2/827'2 (3.62)

Unfortunately we are not able to re-express also the first two terms in (B.61) as integrals
on the contour of the Wilson loops at the boundary. This is unfortunate, as it would have
allowed to compute the expectation value of the Wilson loop without the need of an explicit
string solution. We leave this issue to future investigations.

Before we end this subsection we turn back to the issue of the non-closure of 7. As
already observed a surface calibrated with respect to a closed form is a minimal surface in
its homology class. Such a statement will not apply in our case and we should instead study
our string solutions within the framework of generalized calibrations. Those are defined
in complete analogy to calibrations, only without demanding closure of the form [fJ—
6. Given a k-form 1 which is not closed, a generalized calibrated submanifold is a
k-dimensional submanifold which is a minimum of the (energy) functional

E(M) = Vol(M) — /M b, (3.63)

Since we do not require closure of ¢, a minimum of E(M) is not necessarily a minimal-
volume manifold.

Generalized calibrations appear very naturally in the discussion of D-branes in curved
backgrounds. Their actions typically include a Wess-Zumino term in addition to the Dirac-
Born-Infeld term and therefore cannot be seen as volume-minimizing submanifolds. In
these cases the non-closure of ) can be due to torsion or to the presence of background or
worldvolume fluxes. Equation (B.63) can be thought as a BPS condition for these branes.

The above discussion points to a connection between J being a generalized calibra-
tion and our loops having a non-trivial expectation value (in contrast to the @Q-invariant
loops). This interpretation is suggested by (B.51))-(B.56), where we see that while the exact
piece reduces to a divergent boundary contribution canceled by a counter-term, the non
closed piece Jy gives a finite non-trivial expectation value. In comparing equations (B.59)
and (B.63) it is also tempting to consider [ df2 as the analogue of the area functional Vol(M)
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and Jy as the analogue of . It would be interesting to see if there is some realization of
Jo in terms of a pull-back of a flux to the world-sheet.

Another interesting feature of our loops is the existence of unstable solutions. It was
found in [P4] and reviewed in appendix [C.] that there are two classical string solutions
describing the latitude loop, one is a minimum and the other not. This should be quite
general since our scalar couplings define a curve on S? and therefore the string can wrap
the north or the south pole (or in principle also wrap the sphere multiple times). This
phenomenon might be related to the non-closure of 7.

3.4 Loops on S? and strings on AdS3 x S?

We now present an application of the general formalism so far discussed to the subclass
of supersymmetric Wilson loops on S? which were constructed in section and will be
studied further in section . Recall that in the field theory, after setting x4 = 0, the
couplings to the scalars ® can be written in vector notations as (R.19)

[

gt =7 xdz, (3.64)

\)

An interesting way to think of (B.64) is as

%aﬁ = J';da’ (3.65)
where J is the almost complex structure of unit 2-sphere (D.J). This almost complex
structure appears then very naturally in the definition of these Wilson loops.

The dual string solutions in the bulk live in the subspace AdS3 x S? C X gotten by
restricting to x4 = 0. This clearly implies that on the world-sheet also d,z* = 0, and one
of the pseudo-holomorphic equations (B.2§) becomes

V' 0ux’ + 200y’ =0, i=1,2,3. (3.66)

This can be easily integrated to a constant
T1y1 +22y2 +a3y3 =C. (3.67)
Hence the strings are restricted to live inside a four-dimensional subspace of AdS3 x S?

given by this constraint.

Q

The remaining equations in (B.2§) can be repackaged in terms of the following almost
complex structure

0 ys —yo 0 —z3 o
22 —y3 0 1 22 3 0 —x
7= y2 —y1 0O —z3 21 0 (3.68)
0 —x3 o 0 —ys o
22 g 0 —a | 22 ys 0 -y
—x2 x1 0 -y2 y1 O
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which should be thought as defined on the four-dimensional subspace of AdS3 x S? given
by (B.67).

Note that all the sub-blocks of the almost complex structure (B.6§) are proportional
to the almost complex structure of S? (D.d). Therefore this construction naturally extends
the map from the gauge couplings to the scalars (3.65), (B:24) to the bulk of AdS3 x S2.

For some examples in this S sub-sector the explicit string solutions have been written
down explicitly and are collected in appendix [J. These solutions are dual to the latitude
and two longitudes Wilson loops discussed in section and section P.3.9. Using them
we can explicitly test the validity of the [J-equations. Translating from polar and spherical
coordinates, the solution ([C.2) is

tanh og cos T tanh og sin 7 1
r=— To= —— 7, T3 = , z = tanh og tanh o,
cosh o cosh o cosh o
COS T sinT tanh(og &+ o)
N =—"—""_"37"""7> Yo=—"""""F7"""T > Yys = ————— -
zcosh(og £ o) z cosh(og £ o) z

(3.69)
where the £ sign depends on whether the string wraps over the north or the south poles.
It is immediate to check that this solution satisfies 2 + 22 = 1 and that z1y; + Toys +
z3ys3 is a constant (B.67). It is also not difficult to check that it satisfies the J-equations.
Before going to the two-longitudes solution we recall (see section and ap-
pendix [C.J) that it is related by a stereographic projection to the cusp solution on the
plane. This solution has vanishing regularized action and is therefore expected to be
solution of the pseudo-holomorphic equation associated to (B.9) as we now verify. For
convenience we write the metric of the relevant subspace of AdSs x S° as

1
2 (dzf + dz3) + y? (dyi + dy3) (3.70)
so that the pseudo-holomorphicity condition becomes
Dot — y? \/g €0’y =0, u=1,2, m=1,2. (3.71)

In these coordinates the cusp solution found in appendix reads!”

x1 = rcos p(v), x9 = rsin@(v), (3.72)
cos (v sin (v
T v

where r and v are world-sheet coordinates (not in the conformal gauge) and

. 1+1/p?
arcsin

1
V1+p? 1+ 1/v?’

1 1+1/p?
¢ = ———arcsin ;/1)2 . (3.75)
1 _|_p2 1+ 1/U

7 This solution describes only half the world-sheet, the other half is a mirror image of it and all the

o= arcsin% — (3.74)

ensuing statements apply to it too.
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Calculating the induced world-sheet metric, one finds

1+0° 1 P14 =t
r2p?’ gro = T oo = v2(p? —v?)(1 +v2)’
. p
Vi = N __U2 ) (3.77)

With these expression one can check that the supersymmetric cusp solution indeed satis-

fies (7).

Now we are ready to move over to the two-longitudes solution, which is related to the

Grr = (376)

cusp solution by a coordinate change (a conformal transformation on the boundary). In
appendix [C.9 it is written in global coordinates and mapping them to the Poincaré patch

we have
2r " 2r iné r24+r2? —1
X1 = -———F5 5 5 COS rT9g = ————— Sin Lo —= —
LR PR ’ 2T T2 22 ’ 3T Ty 22 (3.78)
sin ¢ Ccos 0 2rv ’
= , = , =0, 2=
9 z Y2 z Ya 1+ 72 4 1r2p2

with the same ¢(v) and ¢(v) as before (B.79).

As for the latitude solution, for this solution too it is clear that 2% 4+ 2> = 1 and that
r1y1 + T2y2 + x3y3 is a constant () Using the same expressions for the world-sheet
metric (B.77) we can also check that it satisfies the J-equations.

As discussed in section B.3| the string solutions dual to the Wilson loops can be inter-
preted as (generalized) calibrations. As such their world-sheet area can be computed by
the integral of the pull-back of J to the world-sheet. Using (B.69) and (B.79) it is easy
to verify explicitly this fact for the latitude and two longitudes loops, for which we obtain

/ J= / dodr <smh2 COSh2(J + 00)) ’ (3.79)

/j /dr v — ; — (3.80)

These results are in agreement with the expected (un-regularized) world-sheet area for

respectively

and

these solutions. To obtain the regularized area we need to subtract the boundary term
contribution from [J. The correct regularized area is then obtained from integrating
Jo (B:52), which yields for the latitude and two longitudes respectively

& 1 1
— [d do [ — + — _orsindy, 3.81
/jo / T/o U( cosh? o cosh2(a+00)> embo ( )

p o —4pr o
Jo = 2/ dv/ dr = —-2— 3.82
/ ’ 0 0 VP2 =021+ 7121 +v?))? V1+p? (3.82)

The factor 2 in the second line comes from accounting of the two branches of the two-

longitudes solution. These results are in agreement with those obtained by different meth-
ods in appendix [d.
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4. Loops on a great S? and 2d Yang-Mills theory

In the present section we focus on loops defined on the great S? presented above in sec-
tion P.J. We will provide some evidence, expanding on the discussion in [Bf], that these
loops are actually equivalent to the usual, non-supersymmetric Wilson loops of Yang-Mills
theory on a 2-sphere in the Wu-Mandelstam-Leibbrandt (WML) prescription [7—p9].

We shall start by analyzing the structure of the combined “gauge + scalar” propagator
in Feynman gauge on the sphere and we shall prove that it effectively reduces to the
propagator of pure 2d Yang-Mills theory in the generalized Feynman gauge with gauge
parameter £ = —1 and with the WML prescription to regularize the poles. The equivalence
of the propagators in the two theories leads to the agreement between the leading terms
in the perturbative calculation. In some examples, where there is a conjectured matrix-
model reduction of the perturbative expansion this agreement extends to the full series.
Furthermore in all the examples where we have explicit solutions to the string equations
describing those loops in AdS, the result of that calculation agrees with the strong coupling
expansion of the two dimensional theory.

We should mention, however, that we have not been able to substantiate this corre-
spondence beyond the leading order calculation and those examples, in particular we have
not been able to compute interacting graphs for generic loops. It is then conceivable that
the two dimensional theory describing those loops might be more complicated, with the
same kinetic term as YM, but with different (potentially also non-local) interactions.

If this correspondence holds, it would be one of those miracles of N' = 4 SYM, where
there seems to be a “consistent truncation” to the sphere and we can simply ignore all the
fields away from it. The other remarkable fact of this correspondence is that YM in 2d
is invariant under area preserving diffeomorphisms. So a subsector of the superconformal
theory is invariant under all transformations which change angles but keep areas constant.
One interesting direction to investigate would be then to find out if those properties man-
ifest themselves in a deeper way in the entire theory beyond this subsector.

4.1 Perturbative expansion

Consider a loop ([L.7) restricted to a unit S? (defined by x4 = 0), where the scalar coupling
reduces to O'Z-R = 26,-jk:17j dz®. Expanding the exponent to second order in the fields and
computing the expectation value will then give the following contractions of the gauge
fields and the scalars

(W)~ 1 TP / da’ dy? [(Ai(2) A5(9)) = cmieimn 2"y (D) 0" (m))| . (41)

In the Feynman gauge, where the propagators are

2 ab 2 ab sIJ
a b _ Y94 J 9ij al bJ _ 944 074

(@A) = B (@)= (1)

and using that ;516 jm1 = 6:j0km — 0im0;i, we find (choosing a definite ordering of the loop
parameters)

2
9agN TR 1 ( —yilz —y);
WYy~1-— dsdt T@t) | =gi5 — i 4.
o) = 1= B st )0 (o - 20 (4.3
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Here we have also used that 22 = y? = 1 (and consequently i’ x; = ¢' y; = 0), and we have
normalized the SU(N) generators as Tr (T°T%) = §%°/2. The super-Yang-Mills coupling
constant gynm has been relabeled g4q to distinguish it from the two-dimensional coupling
goq that will appear in the following.

Notice that the combined “gauge + scalar” propagator in the expression above is
not generically a constant, as was the case for the 1/2 BPS circle, a fact which led to the
identification of that operator with the zero-dimensional Gaussian matrix model of [T, [[T].
But still, instead of having mass-dimension 2, as expected in a four-dimensional theory it
is dimensionless. This is the first indication that this effective propagator may serve as a
vector propagator in two dimensions.

4.1.1 Near-flat loops

As a first step toward making contact with the propagator of Yang-Mills theory on a 2-
sphere, we start with the easier case of small loops near the north pole of the S2, x5 ~ 1.
These loops live on an almost flat surface and, as discussed in section P.€], in the infinitesimal
limit, one recovers the construction of [B4). We may approximate

2 2
= (i a 1= = a3) = (1,01 - B2 (1.4)

For the derivatives with respect to the loop parameter one has
&y ~ (@1, T2, —2101 — T2d2) (4.5)
while the distance is unmodified to leading order

(z—y)(x—y)~(@—y) (—y), (4.6)

where now Latin indices from the end of the alphabet (r, s, ...) run only over the directions
1 and 2.
Since it is always contracted with the tangent vectors, we may simplify the propagator

appearing in (.3) to

_ QZdéab

ab(,. 1 Yi T
Aij (l‘ y) = T4n2 <2gzy + (l‘ — y)2 . (47)

Looking at iy contracted with this expression one obtains to quadratic order (we omit
the overall coefficient with the coupling constant)

L (1 %xs> F)y (@) @) ()
YN =29 | =6ps + - -
v y(z @-9?) @-92 (@-y)? (@ —1)?
— ij’f‘ys (157‘3 _ (x _y)r(x _y)5> )

2 (. —y)?

While this last expression looks very similar to the propagator in (@), it is completely

(4.8)

different. Here everything is written in terms of 2d vectors and one cannot drop the " xz,
and g" ys terms, since they are no longer zero for a general 2d curve.
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We want now to analyze

2 sab T — T —
Ao —y) = B (G0, - LU0 (1.9

in more detail. A simple proof that it can really be interpreted as a propagator consists

in checking that it is annihilated by an appropriate two-dimensional kinetic operator. It
is easy to verify that D™ = —§"°0% + 20"0° does indeed the job. This is a Laplacian in
generalized Feynman gauge with gauge parameter £ = —1. The full gauge-fixed Euclidean
action in this gauge reads

1 [1 1
L=— |~ (F%)? = = (8,A%7)% + 8,b° (D"¢)"| (4.10)
954 4 2
where
Ee = O[TA% + f“bCAl; AS (Dyc)* = 0p.c" + f“bCAif . (4.11)

It is instructive to present also an alternative proof, based on the use of Maxwell’s
equations
0. F" =0. (4.12)

Here F"* is an abelian field strength which in two dimensions has only one component,
Fio, and Maxwell’s equations imply that it is a constant.

If equation ([£.9) is a legitimate propagator, then the two-dimensional gauge field can
be expressed as (here we suppress the color indices)

An(x) = / dy Ao — ) J°(y) (4.13)

where the current J*(y) can be taken to be localized on the loop so that

Ap(z) = %ds Ars(z—y)9°(s) . (4.14)

Differentiating this expression one finds the corresponding field strength

2 . .
g r L — s — Ys\T — s
Fry(w) = O Ag (@) = =3 ¢ ds o y(; - 5)2( Y (4.15)

Using the complex variable z = 1 — y1 + i(x2 — y2), this becomes

2
Fio(z) = z‘% dz—z : (4.16)
which is — gzd /27 if the source surrounds z and vanishes otherwise. Then Fjs is constant
in patches and ([£.9) is indeed a propagator.
Before moving on to the S? case we pause for a moment to notice that the expectation
value of a loop will be a function of the loop’s area. Consider for example a small circle
with radius r sitting at the north pole. The propagator (.9) does not depend on the radius
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of the circle but the tangent vectors &"7° do, so that the final result will scale as 2. More
precisely

s 1 2
%ds dt 2" (s)y° () Avs(z — y) = —§g§dr2 = —92;‘;‘:.,41, (4.17)

where A; is the area of the loop. This result can be generalized to a loop of arbitrary shape
C by using (E10)

2

fds dt " (s)y* () Ars (x — y) = jé dsi"(s)Ar(z) = Fiy = —%Al, (4.18)
c c 5 T

where Y1 is the surface enclosed by the loop.

4.1.2 Generic loops on S?

We now consider generic loops extending over the whole sphere. To see that the expression
in (@) is a vector propagator on S? we change coordinates and parameterize the sphere
in terms of complex coordinates z and Z as

_ 1
1422

x; (242, —i(z—2), 1 —22) . (4.19)

In these coordinates, the S? metric takes the standard Fubini-Study form

4dzdz
ds? = —— = . 4.20
s (14 2z)? (4.20)
From the near-flat case we expect the correct gauge choice to be the generalized Feyn-
man gauge with gauge parameter { = —1. The Yang-Mills term in the action (4.1Q)
becomes for the theory on the sphere
g |1 1 . q _
L=Y2 Lo - Lwiane| = VI (vian 4 (vaan?) . @
934 L4 2 924

where in the last equality we have ignored interaction terms, and the covariant derivatives
are taken with respect to the metric () A simple calculation shows that the propagators

A% (2, w) = 6“bg—gd ! L _z-w
z2\%; T (1+22) 1+ww)z—w’ (4.22)
A (2, w) = 5“bg—§d ! ! S
zZZ\*) 71-(14-22)(14—’[1)@)2—7177
satisfy
9 _ 1
_(gzz)2v§A(Zﬂ;(2’ ,w) — 5ab_62(2 _ w) , (423)

J5a v
and similarly for Azz. By doing the change of variables to the complex coordinates (4.19),
one can then see that the effective propagator in ([.J) agrees with the 2d vector propaga-
tors ({.22) when the 2d and 4d couplings are related by

2

2 944
= 2= 4.24
924 A ( )
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Notice that g%d has 2 dimensions of mass, as becomes obvious after reinserting the appro-
priate powers of the radius of the S? in the formula above.

The alternative argument based on the Maxwell’s equations can also be repeated in
this instance. Given a source along the curve y and using the effective propagator on S2,
the gauge field at x is

A= gﬂi /dyj <%5ij (= —(g)i(ﬂ;)g y)j> 7 (4.25)

and the resulting field-strength, gotten by differentiation and projection in the directions

tangent to the sphere, is

B ggd /d —Uiy; + YiYi ygyz ‘ (4.26)
The associated dual scalar F = ieiijijxk reads
- J
P % /d E”’“y y il (4.27)

To evaluate F explicitly we define f(s) to be the angle between the points x and y. Then
the numerator is proportional to the one-form normal to df, which we label by d¢. This
gives

102 2 2
. g2 sin® 0 g 0 g A
F = Z2d d¢m = %d/d(ﬁ COS2 5 = 2L7'(C'l/2 d@ dd)sm@ = 2g2d _,42 (428)
2

where A is the area of the part of the sphere enclosed by the loop and not including x
and A the total area. Clearly this is a constant unless = crosses the loop. Then it is simple
to evaluate the Wilson loop at the quadratic order using Stokes’ theorem for the x integral

in (.). We get

N -
W)y=1—— [ F+0(g3y) =1—gsyN alac

4
) s 0h). (4.29)

and the result is the product of the areas of the two parts of the sphere separated by the
loop and it clearly does not depend on the order of the y and x integrals.

We were unfortunately not able to calculate higher-order graphs for loops of arbitrary
shape, neither in four dimensions nor explicitly in two. Note that as opposed to the light-
cone gauge, the preferred gauge choice in two dimensions, in our generalized Feynman
gauge there are interaction vertices and the ghosts do not decouple, so the calculation is
non-trivial. As an example of this complexity, we report in appendix |} the computation
of the interacting graphs at order A% in the £ = —1 gauge, in the hope that this could be
matched at some intermediate stage with a similar calculation in four dimensions. We were
not able to find such a matching for a general curve, but were able to carry it through in the
case of a circular loops. We find that also in this gauge, as expected from gauge invariance,
the interacting graphs cancel, but this cancellation is achieved in a very non-trivial way.

It would of course be extremely useful to better understand the relation between 4d
and 2d interactions, for example it would be nice to study 4d gauge choices such that the
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Figure 3: An arbitrary curve on S? divides it into two surfaces, one with area A; and the other
with area Ay. In all the calculations that we did the expectation value of the Wilson loop turns
out to be a function only of the product of those two areas.

combined gauge and scalar propagators reduce to the light-cone gauge propagator in 2d,
where computations are trivial. Then one could hope that in such a 4d gauge it would be
possible to show that by integrating the interacting vertices over the directions transverse
to the sphere, they cancel, as they do in the corresponding gauge in 2d.

In any case, two-dimensional Yang-Mills is a soluble theory [[70, 1], so we can use
known results (derived by other methods) and compare them to some results in four di-
mensions, including some strong coupling results from the AdS dual of N'= 4 SYM, which
we will do in the next subsection.

The above perturbative calculation (§.29) of the Wilson loop in two dimensions is
very similar to the one performed by Staudacher and Krauth in [73] on R? in light-cone
gauge. The important part in their calculation is not the choice of gauge, but the choice of
regularization prescription of a pole in the derivation of the configuration-space propagator.
The one they used, which can be applied also in Euclidean signature, was proposed by Wu,
Mandelstam, and Leibbrandt (WML) [67 -9

Going back for a moment to the near-flat case and changing coordinates from x1, xo
to x4 = x1 Fiwo, it is easy to see that our (.9) has the exact same structure of the WML
propagator on the plane as in [/J], up to a factor of 2

Ty — Y+
(A4 (2) A4 (y)) g (4.30)
In our gauge, with £ = —1, there is a propagator also for A_ (but no mixed term). In the
light-cone gauge one sets A_ = 0 and the A propagator is double ours. The same applies

for the sphere, where one may take A; = 0 as the light-cone gauge and then, using the
same prescription, the propagator for A, would be double the one in ({.23).
Staudacher and Krauth were able to sum up all the ladders and find that the Wilson

loop is given by
1

(W) = S Lh_y (k) exp [—

~ , (4.31)

ggdAl
2
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where L}V_l is a Laguerre polynomial and .A; is the area enclosed by the loop. This is equal
to the expectation value of a Wilson loop in the Gaussian Hermitian matrix model (.§),
after a rescaling of the coupling constant.'® This expression has an obvious generalization
to S? with the simple replacement A; — A;.A3/.A, where the combination of the areas is
the same as appeared in ([£.29).

The reader may be puzzled by those formulas, since they do not agree with the exact
solution of YM in two dimensions [[73, [[4]. This confusion was resolved by Bassetto and
Griguolo [[g], who showed that ([.31]) may be extracted from the exact result by restricting
to the zero instanton sector following the expansion of [[q] (see also [4]). It was therefore
concluded that the perturbative calculation of [g], using the light-cone gauge and the WML
prescription for performing the momentum integrals does not capture non-perturbative
effects.

The two dimensional propagator we found is thus not in the same gauge, but it also
is defined by the WML prescription. Since we expect the result not to depend on gauge,
we conclude that the result of the perturbative 2-dimensional YM sum that our four-
dimensional Wilson loops seem to point to is given by

1 A1 As 92 A1 A
(W) = NLzlv—1 <—9§d W) exp [%d 12 } :

The expansion of this expression to order g2, agrees with the aforementioned result ({.29).

(4.32)

In the next subsection we will provide further evidence that this expression correctly cap-
tures the Wilson loops in four dimensions.

Note that in relating our observables in 4-dimensions and those in 2d, see (4.24),
the real 4-dimensional coupling is, interestingly, matched with an imaginary one in 2-
dimensional. This could be associated to the fact that the supersymmetric loops in Eu-
clidean N' =4 SYM ([.])) have an imaginary scalar coupling and are non-unitary observ-
ables. In many cases their expectation values are greater than 1 (which is manifested in
the dual AdS by negative action) and this seems to be represented in the 2-dimensional
model by this change in sign of the square of the coupling.

4.2 Examples and strong coupling checks

Beyond the agreement at leading order in perturbation theory, which led us to propose that
Wilson loops on S? may be described by 2-dimensional YM, in this section we test this
hypothesis further. We compare the result of some perturbative and some strong coupling
calculations of specific operators in four dimensions with the exact (perturbative) result in
two dimensions (4.39).

To compare with results from AdS we will need the asymptotic behavior of ([.3) at
large N and large gZdN . In this limit it reduces to

2 92 NA{ A, 2 g2 NA Ay
(W) ~ A (D2 v ~ exp —VA‘dA : (4.33)
1/gszA1A2

18 This result is valid for U(N) gauge group. The exact formula for SU(N) can be easily deduced from

this one, see @]
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with I; a modified Bessel function of the first kind.

4.2.1 Latitude

Let us start by considering the circle at latitude 6y discussed above in section P.3.1. This
loop was studied in [B4], where it was shown that its combined gauge-scalar propagator
is the same as the propagator of the 1/2 BPS circle modulo a rescaling of the coupling
constant, gzd — gzd sin?fy. Assuming the vanishing of interacting graphs at all orders in
perturbation theory (as is usually also assumed for the 1/2 BPS circle [id, [L1]), one can
then resum all the ladders with a matrix model computation and show that the expectation
value of the latitude is equal to (.39) after the replacement A;.A45/A% — %Sim2 0. For a
latitude the areas of the patches bound by the curve are

Ay =27(1 — cos ), Ay =27(1 4 cosby), (4.34)

so indeed A1 As = i.AQ sin® 6y, as claimed.

One can test this all-order result also from a string computation in AdSs x S° B4, from
which one finds that the classical action of the string is S = —4/ gsz sin g, consistently
with the strong coupling limit of the matrix model result!? ({33). Finally, a further check
can be obtained for loops in high dimensional symmetric representations of the gauge
group [[[3]: The loop is calculated in this case using a D3-brane rather than a fundamental
string and, again, the resulting action agrees with the matrix model result, including all
1/N corrections at large g2;N.

4.2.2 Two longitudes

The second example we consider are the two longitudes discussed in section P.3.2. In this
case it is not obvious a priori that there exists an all-order matrix model computation,
since the rungs connecting the two different arcs are not constant.
For the two longitudes separated by an angle § the areas of the two patches are given
by
A1 =20, Ao =221 — ). (4.35)

And those factors then come into the one-loop expression (}1.29)

gsz
872

5(2m —§). (4.36)

This can also be verified by a direct integration of the combined propagator along the loop.

This clearly agrees with the weak coupling expansion of (1.39), as is true for all our
supersymmetric loops on a great S2, but for the latitude loops we can also test this ex-
pression at strong coupling, since we have explicit string solutions in AdSs x S°. Those
are described in detail in appendix [C.d, where it is found by a stereographic projection to

19Tn string theory one also finds a second, unstable surface with S = ++4/92,N sin 6y, which matches
another saddle point of the matrix model.
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a cusp in the plane and then calculated by generalizing [61]. The result for the classical

action ([C.2§) reads

2
95, NO(2m — 0)
5=V . (4.37)

™

Recalling that the expectation value of the Wilson loop is the exponent of minus the
classical action, we exactly recover equation ([.33).

We see then that also in this case the perturbative and the strong coupling results
are related to the 1/2 BPS circle by a simple rescaling of the coupling constant, QZd —
gzdé (2 — §). This suggests that the expectation value of this loop may also be captured
by a matrix model, although the propagators are not constant in this case.

5. Discussion

In this paper we have studied a family of supersymmetric Wilson loops in N/ = 4 SYM
which were proposed in [BJ]. The construction assumes the loops are restricted to an S3
submanifold of space-time (or Euclidean space) and then for a curve of arbitrary shape
we give a prescription for the scalar couplings that guarantees that the resulting loop is
globally supersymmetric. This idea is inspired by the supersymmetric loops which have
trivial expectation values @], but our loops are more interesting observables.

We proposed several different angles to study those loops. First we analyzed their gen-
eral properties, like the supersymmetry they preserve. We studied the dual string surfaces
in AdSs x S°, and concentrating on loops on S? we pointed out a possible connection to
YM theory in two dimensions. We also mentioned briefly the connection to topologically
twisted YM.

In the general analysis we focused on certain subclasses of loops which have enlarged
supersymmetry and studied them in detail. One example is 1/2 BPS — a great circle, a
few cases were 1/4 BPS: The latitude line on S?, two half-circles, or the longitudes on 52,
and the “parallel circles” or Hopf fibers on S3. A general loop on S? preserves 1/8 of the
supersymmetries, as do loops built on the base of the Hopf fibration. Some special cases of
1/16 BPS loops are the infinitesimal ones, which reside in a limit where one recovers the
“trivial” loops of [B4]. Another example that is 1/16 BPS and where we found the string
solutions are general toroidal loops.

This analysis shows the richness of these operators we have constructed. One can fo-
cus on subsectors with fewer operators and more supersymmetry, which may simplify some
calculations, or one can go to the more general cases which are far less restrictive but also
more complicated. From an algebraic point of view we found a myriad of different subalge-
bras of PSU(2,2|4) preserved by the different subsectors: OSp(1]2), SU(1/2), OSp(1]2)?,
SU(1|2)2, OSp(2|4), SU(2|2) and OSp(4*|4). We have included an extensive analysis of
those symmetries in section P to facilitate future study of those subsectors.

Our next angle was that of the dual string theory on AdSs x S°, where the Wilson
loops (in the fundamental representation) are described by fundamental strings and in our
case are restricted to live within an AdS, x S? subspace. For some of the specific examples
enumerated in section f| we have explicit solutions of the string equations of motion. We
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gathered them all in appendix [J. While some of those solutions were known before, most
of them (the “longitudes”, the “latitudes on the Hopf base” and the “toroidal loops”) are
new.

But beyond the explicit solutions in those special examples we found some general
properties satisfied by the strings describing those loops (following similar ideas in [5J]).
First we found an almost complex structure on the AdS; x S? subspace where the string
solution lives. Its structure is inspired by the supersymmetry properties of the loops and is
a generalization of the almost complex structure on S° (see appendix D). We then showed
that a string that is pseudo-holomorphic with respect to this almost complex structure
has the correct boundary conditions, preserves the right supersymmetries and satisfies the
o-model equations of motion. In the specific examples where we had explicit solutions the
strings are indeed pseudo-holomorphic and we are inclined to believe that this condition
will be satisfied in general, though we do not have an existence proof.

Another approach at studying those loops was to find an analogous theory with the
same operators. This was inspired by the fact that the circle seems to be captured by a
0-dimensional matrix model [[{, [[1]. We presented some evidence that when the loops
are restricted to a great S? and preserve four supercharges they may be described by a
perturbative calculation in 2-dimensional bosonic YM on S?. As with the AdS calculation
mentioned in the previous paragraph, we do not have a proof of this equivalence, but all
the explicit checks that we could make worked.

The checks include the ladder diagrams for all the loops on S? (in a certain gauge, see
appendix [H), explicit string theory results for the “latitude” and “longitudes” examples
as well as an agreement with the 0-dimensional matrix model. A peculiar fact is that the
Wilson loops do not agree with the full result of YM in 2 dimensions, but rather to a pertur-
bative sector excluding instanton contributions [[fj] (the instantons of 2-dimensional YM
are abelian monopoles). This feature of the agreement might appear somewhat unnatural.
On one side in fact there is a perfectly defined set of operators of N' =4 SYM, while on the
other side the zero-instanton sector of two-dimensional YM is not clearly defined. This is
because the instanton numbers in this theory are not topological quantities (the instantons
are unstable and can unwind in the U(V) space).?’ It would be then extremely interesting
to understand whether the full 2-dimensional result, including instanton corrections is also
related to such Wilson loops in some way.

A remarkable fact about this purported correspondence is that 2-dimensional YM is
invariant under area-preserving diffeomorphisms. So by restricting to a sphere of fixed
radius and adding the scalar couplings we found operators in AN/ = 4 theory whose expec-
tation value depends on certain areas on the sphere. We find this quite a surprising result
in a conformal theory.

One last approach to study our loops is through a topologically twisted version of
N = 4 SYM. We presented the relevant twist, where three of the six scalars become a
triplet under the twisted Lorentz group and the other three are singlets. The novel feature
about our loops is that they are not invariant under the usual supersymmetry generators,

20We thank David Gross for raising this issue.
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but rather under a linear combination with the super-conformal ones. This means that
those operators are observables in the twisted theory where the BRST charges are made
out of those linear combinations. We have not constructed this theory in any detail but we
think it would be interesting to do so. We did use this twisting to motivate the string-theory
construction in section [J and we also expect it to be useful in trying to prove that those
Wilson loops may be calculated in terms of a lower-dimensional theory, like 2-dimensional
YM, or in proving invariance under area-preserving diffeomorphisms.

Beyond the operators studied in this paper (and the ones in [B4]) we find it quite likely
that there are other supersymmetric Wilson loops. These non-local operators, as well as

surface operators (for example [[]-[9]) and domain walls [B0] are much less studied than
local operators but they have very interesting properties.

While this is quite an extensive report on supersymmetric Wilson loops on S? where
we presented many new results, it is also satisfying to see how many interesting questions
were left unanswered. This is an indication to us that we have touched on an interesting
subsector of ' =4 SYM which is very rich, yet one where exact results are feasible.
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A. Superconformal algebra

In this appendix we collect our conventions for the N' = 4 superconformal algebra
PSU(2,2[4), following [2§]. We denote by J¢, j‘j‘ﬁ- the generators of the SU(2);, x SU(2)r
Lorentz group, and by RAB the 15 generators of the R-symmetry group SU(4). The re-
maining bosonic generators are the translations P,g, the special conformal transformations
K and the dilatations D. Finally the 32 fermionic generators are the Poincaré super-
symmetries Q4, Qg4 and the superconformal supersymmetries 5S4, SaA,

The commutators of any generator with J%, jd‘ﬁ- and RAB are canonically dictated
by the index structure, while commutators with the dilatation operator D are given by
[D , Q] = dim(G) G, where dim(G) is the dimension of the generator G.
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The remaining non-trivial commutators are

{Q4,Qan} = 65 Paa (S%,54B) = 6B Ko
[0, Q4] = 955°4, (K2, Qs] = 3353
[Pad 75164] = _5deA7 [Pad ) SBA] = _5§Qé )

1 Al
(QU.S3) = 6% + 60RA, + SOAOLD, .

{Qan .58} = 657, — 54RP, + %5555177
(K, Pys| = 05J% + 05 J% + 505D

For the analysis of the supersymmetries preserved by the various Wilson loop operators
discussed in the paper, it is natural to consider the breaking of the R-symmetry group
SU(4) — SU(2)4 x SU(2)p. Explicitly, we can split the 4 and 4 indices of SU(4) as

G4 — gae Ga — Geaa (A.2)

where a and a are respectively SU(2) 4 and SU(2)p fundamental indices.
All SU(2) indices can be raised/lowered by using the appropriate epsilon tensor, for
which we adopt the conventions

. < 0 1> (0-1)
g = Ers =
—10 10 (A.3)

gr = €ngs s gr = 5rsgs 5

where the indices r, s belong to either SU(2)r, SU(2)g, SU(2)4, or SU(2)p.
The R-symmetry generators decompose under SU(4) — SU(2)4 x SU(2)p as 15 —
(3,1) +(1,3) + (3,3). This can be explicitly written as

: 1 wma 1o 1.
Ry — R, = ST + S0, T% + S M, (A4)

where T' dé) and T are respectively the SU(2) 4 and SU(2)p generators, and the 9 generators

in the (3, 3) are given by Md%b,

which is traceless in each pair of indices
baraa _ sbyraa _
oM = 5, M, =0. (A.5)
Inserting the decomposition (A.4)) in the SU(4) algebra
[R%s, RS = 6pR%G — 65 R, (A.6)

a

and projecting onto singlets of SU(2)4 and of SU(2)p, one can verify that T‘z and T
satisfy SU(2) commutation relations with standard normalization

(7%, 1] = 84T — 6517, [T, T%] = 6475, — 551%. (A7)
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One can also check that 7' é;-) and T9 act on the supercharges according to canonical SU(2)
commutation rules. For example starting from

1
[R5, Q] = —05Q4 + 705Q% , (A-8)
the above decomposition ([A.4) can be seen to imply
Ha éc ¢ ac 1 a e a éc cca 1 a e
[TbaQa] = _56Qa + 551) [ [ b Qa] = _5an + §5b a (Ag)

and similarly for the other supercharges.
Commutators involving the M d%b may be written more conveniently in the basis defined
by

Ma%b = (Tm)dB(Tm)ab M T‘Z = (Tm)db T, T% = (t;m)% T (A.10)

where 1, m are indices in the 3 of SU(2)4 and SU(2)p respectively, and 7, 7, are Pauli
matrices. Projecting (A.f) onto the (3, 3) representation of SU(2)4 x SU(2)p under the

decomposition ([A.4), one can obtain the following commutation relations
(T s Mivm| = iy Mipm [T s Miiun)] = i€mnp Mg , (A1)
. A1

[Mrmn ) Mnn] =1 (5mn€mhpr + 577'1h5minp) .

For completeness, we may also list the action of the M,;,,, on the supercharges, which can
be written as

(Myon, Qi) =~ (1) (1)@ (Mo, 529 = 5 ()2
Aa 1 a 1 b a gb (A12)
[Mmvada] = 2( i) a(Tm) anb’ [ Mym, Sg ] §(Tm) a(Tm) b9

As they can be useful for explicit calculations of the superalgebras presented in ap-
pendix [§, we finally list here the remaining non-trivial commutation relations of the su-
perconformal algebra written in SU(2)4 x SU(2)p notation

(@87, Q%) = —e0 Pac,  {54",52;} = —e"0) K.,

[Kad s Q%a] = €aﬁ‘§ga ) [ od s Qﬁd] = gaﬁsgca )

[Pad ) Sga] = 5&6@2’7 ) [Pa‘j‘ ’ Sg] - gaﬁQaa ’ (A.13)
{ Za ’ Sgb — €ab€ab<]aﬁ + §€o¢ﬁ <€abTab + 8abTab _ Mab ab €ab€abD) ,

_ 1 .
gt b b b b b
{Q% . 65} = =43yt 2€ap (E“ Ty — ey T + M + €, D) .

B. Superalgebra calculations

In this appendix we collect some of the explicit calculations of the superalgebras for the
different subsectors of Wilson loop operators presented in section [P}
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B.1 Loops on S?

To determine what is the full superalgebra preserved by this family of Wilson loop oper-
ators, it is first convenient to rewrite the U(1) generator (B.2§) using SU(2);, x SU(2)r
notation as

1.
L= 5}1‘10‘ (Pos — Kog) - (B.1)
Then using the superconformal algebra ([A.13) one can obtain the following commutation
relations

{Qa Qb} Tab {Qa Qb} Tab
{o, @} = —2=r, (B.2)

a Na Na 1 a

[L7Q]:§Q7 [L7Q]Z§Q7

while the commutators of the SU(2) g generators with the supercharges and with themselves
are canonical, as in ([[.L1J), and we do not report them here. The algebra (B.2) is an
OSp(2|2) superalgebra (modulo possible rescalings of the charges to bring it in a standard
form).

This superalgebra is isomorphic to SU(1]|2) as can be seen by defining the L eigenstates

Q1 =-(Q"+ Q). (B.3)

N —

In terms of these charges, the superalgebra above can be written as

(e 2t} (e 2} -

{op. @} =1+ e, (B.4)
1
[L,0%] = £50%,

which is indeed the superalgebra SU(1|2) (again we do not write the canonical SU(2)p
commutation relations). Notice that from (B.4) we can see that the supercharges Q% and
Q¢ do square to zero. However these operators are not scalar after the twisting ([.20), so
one may not use them to define a topological BRST charge in the usual sense.

B.2 Latitude

We begin by rewriting the bosonic generators in SU(2) x SU(2)g notation in the conven-
tions given in appendix [A]. The SU(2) obtained from (R.5) after a translation and dilatation
is generated by

60) _  — Q& (D . T N .
Ly = 550 (13)%* (Poa — Kog) —icot Oy D,
1. .
L§") = J1° (Pag — Kaa) , (B.5)
(0o) _ 1 AN ad (p . .
Ly = o~ (Js+ J3) + 5 cot 00 1% (Pag, + Kag) -
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where J3 = %(Tg)aﬁjﬁ w and similarly for J3. The generator of the U(1) symmetry mixing
Lorentz and R-symmetry can be written as

1

€= sin 90

<j3 A T3) : (B.6)

where T5 = %(Tg)de%, and the normalization by sin 6y is for later convenience.

We can now check that these bosonic symmetries together with the eight supercharges
in (£.33) and (R.34) form the superalgebra SU(2|2). To this purpose, one has to find
linear combinations of the above supercharges which transform as (2,2) + (2,2) under
SU(2) x SU(2)p. These can be constructed from the following Lgeo) eigenstates

a,t 1 a Na a, = 1 a /a
20 =3 ( 1+ Q(l)) ) s =5 (Q(z) + (2)) : (B.7)
After some algebra, one finds that the relevant combinations which give SU(2) doublets
are - . - o
%= ( ot .Q<%L>+) . Si=— (Zggb_ e ) S 3
V2 i) — 19 V2 \ QG Q)

where = 1,2 is a fundamental index in the SU(2) in (B.J). Defining as usual the generators
L = ()L, e=1,2,3 (B.9)

the full superalgebra preserved by the latitude Wilson loop can be finally written as

1 1
(7%, Q5] = —90Q5 + 55595, 1%, 85) =~y + 5685
1 1
(L7, Q5] = 8795 — 56795, (L7, 85] = 8185 — 50355, (B.10)

b b b b
{ ?7,85} =€ Lys + s T — €ep5C

and all other commutators vanish (except the standard SU(2) algebras for T9 and L').
Notice in particular that C behaves as a central charge of the algebra. This is the superal-
gebra SU(2|2), as stated above.

B.3 Two longitudes

First, to recognize how the SO(4) symmetry rotating ®3, ®*, &> and ®° arises from the
algebra of the fermionic charges (R.4(]), one can evaluate commutators of supercharges with
the same chirality. This yields

{ (1) Q?l)} = 2T, { (@) Q?z)} = —2T, { (1) Q?a)} =2Mj3,
{ ) Qlfl)} =2r, { ) Ql&)} =2, { ) Ql(’z)} = —2M{7,
(B.11)

where the Mgg are the generators in the (3,3) of SU(2)4 x SU(2)p arising in the decom-
position of SU(4) discussed in appendix [A], see (A-4). In the basis defined in (A10), the
R-symmetry generators in (B.11)) may be written as

T% = —(Tms)“b T, Mbe = —(TmE)ab M,

3m

(B.12)
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The six generators Tp,,, Mj,, commute with the SO(2) generated by T3 (which is the sym-
metry rotating ®; and ®3), and as expected generate a SO(4) subgroup of SU(4), as can
be seen using the algebra (A-11)). Explicitly, defining the linear combinations

~ 1 ~ 1
T = §(Tm + Mgm) ) In = §(Tm - M?,m)v (B'13)
one finds that
[?m ) ,j:n] = Z'Emnpi;) ) [%m ) ,j:n] = Z'Emnpi;) ) [’j\—m ) i—n] =0 ) (B14)

which is indeed SU(2) x SU(2) = SO(4). By looking at the action of the T}, and M;, on
the supercharges, one can construct the following orthogonal combinations

Ao — 1 a a Aa — 1 a a
o =5(2-9) =5(+%) (B-15)
and analogously for the other chirality. These combinations satisfy
(@@} = 2re)* T, {0°.Q"} = 2(rne)" T,
B.16)
T e 1 ) T e 1 a A (
[Tmyg ] :__(Tm) be7 [Tm,Q ] :__(Tm) be7

2 2
while all commutators mixing generators in the first and second column of the above
equation vanish. A similar algebra applies of course to the negative chirality charges.
The remaining U(1) x U(1) bosonic symmetry generated by

LE%P”R@-K@% IE%ﬁWRW+Kw% (B.17)
arises from commutators of supercharges of opposite chirality. By explicitly evaluating
the relevant commutators, it is easy to see that L acts on any supercharge in (2.4() by
changing its chirality, as in (B.d), while acting with I changes chirality together with
flipping a charge of type “(1)” into a charge of type “(2)”. One can then see that defining
the linear combinations

E:%@_n Z:%@+U (B.18)
together with the L and L eigenstates
woj(@e?)  @=}(@:?) o0
allows one to write the full algebra in the direct product form
{93.¢4} ={a=.a"} =0, {93, 04} ={2=.a" } =0,
{02,080} = (1) T + ', {01,800} = (1) T + ',
AR 1.2 -sla, o
(7, Q1) = =5 () Q% (7, Q4] = =5 ()3 Q%

with all other not listed commutators vanishing. As claimed above, this is a SU(1]2) x
SU(1]2) superalgebra. As a side remark, notice that the SU(1|2) algebra (B.4)) preserved
by the great S2 loops is just a diagonal subgroup of the one we found here.
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C. String solutions

In this appendix we report the explicit computations of the string solutions in AdSs x S°
corresponding to the examples used in the main text.

C.1 Latitude

The string solution for the 1/4 BPS latitude was first found in [59, P4]. Here we reprint the
result in a coordinate system more suited for our present discussion.?’ We use the metric

L2
ds? = ?(d22 +dr? +r2de? + dad) + L2(dv? +sin? 9 dp?) (C.1)

where (r, ¢) are radial coordinates in the (1, 2) plane. For the latitude at angle 6y, the
boundary of the string should end along the curve at r = sin 6y and z3 = cos 0y, while on
the sphere side of the ansatz it should end at ¥g = 7/2 — 0y see (.2§) and figure fl. The
boundary conditions represent motion around both spheres in the same direction, but with
a phase difference of m. The string solution will be given by a constant x3, while in the
conformal gauge we may take the ansatz z = z(o0), r =r(0), 9 =9(c) and p = o+ 7 = 7.
The solution is given by

sin 6y 1
ingy=———. 2
cosho’ S cosh(og + o) (C.2)

z = sinfgy tanh o, r=

The integration constant oy is fixed by requiring that at ¢ = 0 one has sinvy = cosfy =
1/cosh og. The two signs in the expression for sin® correspond to wrapping the string
either around the north pole of the sphere or around the south pole.

The value of the classical action of the string is

S=TFVAsinb,. (C.3)

The loop corresponding to the solution wrapping the “short side” of the sphere (around
the north pole, with the — sign in the expression above) has then a value

(W) = eV sinfo, (C.4)

while the other solution corresponds to an unstable instanton, whose value is exponentially
suppressed at large .

C.2 Two longitudes

The basic idea in finding the string solution for the two longitudes on the S? is to observe
that a stereographic projection to the plane will map this loop to a single cusp at the origin
with an opening angle § (see figure []). This will still be 1/4 BPS and will be of the type
invariant under the @ supercharges [B4], therefore it will have trivial expectation value.
In that way our operator is similar to the usual 1/2 BPS circle that is conformal to the
straight line which has trivial value. The operator on the sphere will have non-trivial value
because of the compactness of the space.

21Compared to those references, we translated the circle in the z3 and rescaled it appropriately to fit on
S2. We also replaced 6y — /2 — 0o.
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Figure 4: The quarter-BPS Wilson loop made of two longitudes (a.) can be mapped to a stere-
ographic projection the a cusp on the plane (b.). The scalar couplings (see figure E b.) are not
altered and are the natural coupling for a supersymmetric cusp in the plane.

We shall therefore first find the string solution for a single cusp of angle § in the plane
and then we shall conformally transform it to the interesting system which is compact.

The cusp can be solved by using the conformal symmetry, as was done in [61]. Take
the metric on AdSs x S' subspace of AdSs x S® to be

2
ds? = % (dz* + dr? + r?d¢?) + L?dyp* . (C.5)

If the cusp is at the origin r = 0, it is invariant under rescaling of . This symmetry is then
extended to the string world-sheet, where the z coordinate will have a linear dependence
on r. As world-sheet coordinates we take r and ¢. The ansatz for the other coordinates is

z=rv(d),  ¢=¢(9). (C.6)

The Nambu-Goto action is (prime is the derivative with respect to ¢)

\/X 1 2 2 2,2
Sne = ﬁ/drdqu\/v + (1 +v2)(1 +0v2p?). (C.7)

The r dependence is trivial and it is easy to find two conserved quantities, the energy and
the canonical momentum conjugate to ¢

1+ 02 (14 %)y’

E= ,  J= :
02/ 4 (1 +02)(1 4 v2¢p?) VU2 4+ (1 +02)(1 +v29?)

(C.8)

The BPS condition turns out, not surprisingly, to be E = |J|. To derive it consider the
Legendre transform term which should be added to the action. Using the equations of
motion it is

_\/—X /_@ _2_2}/2_”2(1_1_(’0/2)
LT = o /drdqb(ZpZ) oo /drd(brv?\/v’? + 1+ +02?) ()
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Requiring that the total Lagrangian vanishes locally leads to
vip? —1=0. (C.10)

This can be written in terms of the conserved quantities in (C.§) as E? = J2.
The equation of motion for v is

1402 1
v
which integrates to
) 1 . 1+1/p?
= arcsin — — ———arcsin | ————— . C.12
’ P 1+p? 14+1/v? (€12)

This expression is valid over half the world-sheet, till the midpoint. Beyond that we should
analytically continue to

v 1 [T+ 1/p?
S i — - 1
¢ = m — arcsin » T, <7T arcsing /9 F1/02 ) (C.13)

The final value of ¢ when v reaches zero again is

1
o=m|l—-——]. (C.14)
1+ p?
The equation for ¢ is even a bit simpler
1 /
P=t== - , (C.15)
v (1+v2)y/p? —v?
which integrates to
1 1+1/p?
p = ——— arcsin ;/1)2 . (C.16)
V14 p? 1+1/v
After going to the second branch the final value is
T (C.17)

901:\/T—p27

and indeed § + 1 = m, as should be the case by the supersymmetric construction of the
scalar couplings (see (B-3H) and the paragraph thereafter).

As mentioned above, the Nambu-Goto action is equal (up to a sign) to the total
derivative which has to be added, so the full Lagrangian vanishes

SNGZQ/ﬁ/dU__lzﬂ ar 1 (C.18)
2 r pu?Z 2w r pug

with ug a cutoff. Note that for small u the integrand 1/(rpug) ~ 1/zy is the standard
divergence. Indeed it cancels against the Legendre transform.
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The next step is to conformally transform to global AdS with metric
ds* = L? [dp* + sinh? p(d6? + sin® 0d¢?) + dy?] | (C.19)

by (¢ and ¢ are mapped to themselves)

1 2 2
coshp = s , sinh psin§ = iy (C.20)
2z Z
This gives the surface
1 2 2,2 1
cosh p = S , sinhpsinf = —. (C.21)
2rv v

The relation between v, ¢ and ¢ is as before, but the action will have to be calculated
again using a different regularization that should give the expectation value of the Wilson
loop with two cusps on the sphere.

Plugging in the solution into the Nambu-Goto action, it may be written in the following

2
SNGZQ/ﬁ/d(ng(l;‘lv)zﬂ ﬁ/dv#
2m T v 2m T v2y/p? — v

= Q dpd@ pSinthSine
2m V/p?sinh? psin® 6 — 1

This expression is simple to integrate. For a fixed p the variable 6 varies between the two

form

(C.22)

roots of sin #sinh p = 1/p, and then back. Integrating over this variable gives 27 sinh p, so
we are left with the p integration between the minimal value, where sinhp = 1/p and a
cutoff pg at large p

SNGz\/X/dp Sinhpzﬁ(COShpo—Ul%-Z%) . (C.23)

One may be tempted to simply throw away the divergent cosh py term, but some more
care is actually required to proceed. As we noted before, the range of the 6 integration for

fixed pg is not 2w, but roughly
4

2r — ———.
T psinh pg

(C.24)

So this gives the possibility of some finite corrections left over from the divergent piece.
The precise prescription for getting a finite value for the Wilson loop expectation value was
given in [p]]. It is defined in the Poincaré patch, where one can resort to considerations
on the near horizon limit of D3-branes. The divergence in the bulk action is canceled by
a boundary term which is a Legendre transform of the six coordinates orthogonal to the
brane. In global AdS this translates to

0LnG
op

Eboundary = —coth POPp = — coth Po Pl (025)

where p’ is the derivative of p with respect to the world-sheet coordinate orthogonal to the
boundary. In the limit of large pg we can replace coth pg — 1.
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To evaluate it in practice one has to reintroduce p’ into ([C.27), where it was set to
one, leading to the expression

\/X 0 V/p?sinh? ppsin? 6 — 1

Shoundary = d inh? 1+298 2_’_8 2
boundary = "o psinh? pg sin @ [sm po(L +sin0(969)") + ( 9('0)]
/d@ p? sinh? pg(sinh? pg sin? § + 1) — cosh? pg
s1nh2 posin?6 4 1 \/ p2 sinh? pg sin” 6 — 1

(C.26)
The first term in the numerator cancels part of the denominator giving the same integral
over 0 as in (C.23), which is equal to 27 sinh pg. The second term, with cosh? py in the
numerator integrates to a finite answer such that the final result for the boundary term is

th
Sboundary &~ _\/X <Sinh Lo — ]%) . (027)

Combining this with the bulk action ([C.23), the divergences indeed cancel and we get
the final answer for the action of the string dual to the two-longitudes Wilson loop

PO Hp\r _VA@T—9) (C.28)

In the last equality we used ([C.14) to represent p in terms of 4.

Non-BPS case. For completion we consider here the case of the general non-
supersymmetric cusp in the plane with opening angle § and arbitrary jump in the scalar
coupling ;1. This calculation is not used in the main text, as this loop is not BPS, but it
was left unsolved in [6I]] and is a simple generalization of the BPS case.

In the supersymmetric case the ratio of the two conserved charges J and E in ([C.§)
was 1. In the non-supersymmetric case it is still simple and we denote it by ¢

g=— =v¢. (C.29)

Using this we find the differential equation for v

V2 — 1+U[p+(p — @ — ol p:%. (C.30)
This is an elliptic equation. To see that define
‘= v2(1+b2)’ b2 — 1<p P+ —q)—|—4p2). (C.31)
b2(1 +v?) 2
Then ( satisfies
2
¢? = Z—j <1 - 113—;—;2)2> 1=k, K= % : (C.32)
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Therefore the relation between ¢ and ¢ is given in terms of incomplete elliptic integrals of
the first and third kind F' and II with argument arcsin ¢ and modulus k

b . b? ,
¢ = pi\/l—k—bQ [F(arcsm G k)—1I <m,arcsm & /<;>] ) (C.33)

At the boundary v = 0 so also ( = 0. It reaches a maximal value ( = 1 beyond which
another copy of the surface continues with

b v? . v? )
= ])\/T—lﬂ [2K(kz) —2I1 <m,k> — F(arcsin (5 k) + 11 <m,arcsmg; k‘)] .

(C.34)
The final value of ¢ when we reach the boundary again is twice the complete elliptic
integrals

_ ]9\/1272——132 [K(ky) -n (1:1—2()21@)] . (C.35)

Integrating ¢ leads to an even simpler expression in terms of elliptic integrals of the
first kind

q b ,
= /qu ol mF(arcsm G k). (C.36)

The final value of ¢ is again related to the complete integral

qb
= pm K (k). (C.37)

Then we can calculate the classical action
1
\/_/d a2 “’ (C.38)

VA [ar ¢1 +02 | /I -3)0 -k
on b ¢

+ [F(arcsin (; k) — E(arcsin (; k:)]] ,

where E denotes an elliptic integral of the second kind. The right hand side should be
evaluated at the two boundaries where ¢ = 0 (on the two branches). The result is

Sne = f/d’" ” 1b+b2 [CO + 2K (k) — E(k)]] . (C.39)

Here (j is a cutoff at small (, so the first term is equal to

VA 2\/1 +02 VA
o Torce . o) Yo (C.40)

where zg is a cutoff on z, and this is the standard divergence for the two rays making the
cusp. The divergence is canceled as usual by a boundary term.
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C.3 Toroidal loops

We describe now the toroidal loops introduced in section R.4 and section P.§. We perform
the calculation in the general case where the radii of the loops r1 and ry are independent
of the periods ki and ko along the two cycles of the torus. To focus on the case of the
latitude on the Hopf base discussed in section R.4, one should simply set

Y B
sin 5 = ey (C.A41)

Consider a doubly-periodic motion on S3

0
1 = sin 3 sinkit, oo = sin 5 cos kit, x3 = cos 3 sin kot , T4 = COS 5 cos kaot, (C.42)
where 6 is one of the Euler angles, while the other two angles are given by
¢ = (k1 + ko)t , = (ko — k1)t. (C.43)

The scalar couplings for these loops are simple

%af = %(kzl + ko) sin @ cos(ky — kp)tdt,

%af = %(k‘l + ko) sin @ sin(kg — k1)t dt , (C.44)
1 0 .90

3 0’? = <k‘2 cos? 5~ ky sin? §> dt.

This is just a periodic motion, as in the case of the latitude on the great S2.

It is possible to find the minimal surface representing this Wilson loop in AdSs x S°
using the techniques of [Bg]. There it was shown how to calculate a general periodic Wilson
loop, but the example of motion on a torus was not done explicitly.

One first notices that the AdSs and S° parts of the o-model completely decouple. In
principle the two systems may be coupled because of the Virasoro constraint, which should
be satisfied on the combined system only. All the examples in [B9 where this occurred
were the correlation functions of two loops. Here we have a single loop and in this case the
Virasoro constraint is indeed satisfied independently on both sides.

The solution to the equations of motion on the S® side are like in the latitude on the

great S? example ([C.9)

. 1 e — kO
sind = cosh (ks — F) (G0 £ o) o= (ka —ki)7. (C.45)

The sign choice corresponds to a surface wrapping the northern or southern hemisphere
and the integration constant g is chosen so that at ¢ = 0 it reaches the boundary value

1 . (k‘l + k‘Q) sin
cosh[(kz — k1)oo] 2\/k’% sin? & + k3 cos? §

(C.46)

sindg =
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The action for the string will be the sum of AdSs part and of the S® part. The latter is
just the area of the part of the sphere covered by the string (taking ko > ki)

kg cos? § — ky sin? §
Sgs = (kg — ky) | 14 252 LI BV5Y
\/k2SlIl 2+kzcoszg

(C.47)

0 ki k
= kg—klj:\/k2s1n §+k2cos2 1h2 V.
\/k2sm 2+k200823

The sign choice again corresponds to the two possible wrappings of S2.
To solve the AdSs5 part it is convenient to write it as a hypersurface in flat six-
dimensional Minkowski space

YR YR YE YR+ Y4 YE = L2 (C.48)

Now let us define the coordinates rg, r1, 79, v, ¢1 and ¢ by

Yy = Lrgcoshw, Y5 = Lrgsinhwv,
Y1 = Lrqcos ¢, Yy = Lrysin ¢, (C.49)
Y3 = Lrycos ¢o, Y4 = Lrysin ¢o .
Those coordinates satisfy the constraint —r§+r?+r3 = —1, and the metric of the embedding
flat Minkowski space is
ds* = L? (—dr§ + r§dv? + dr} + rideé + dr; + r3ds3) . (C.50)

The relevant ansatz for our system of periodic motion on 7?2 is

ry = Ti(o-) ) V= U(J) ) o1 = k17 + Oél(O') ) ¢2 = ko1 + Oég(O') . (051)
Furthermore we can set a1, g and v to be constants, leaving only the action for rg, rq,
and r9

SAd35:4 k‘2—|—7"2k:2+A( 7‘(2]—1—7“%—1—7‘%—1—1)]. (C.52)

Here A is a Lagrange multiplier.
The equations of motion for rg, 1 and ro are

ro=Aro, i =i+ N, )= (k3 + A (C.53)

It is simple to find the first integral of motion, it is the diagonal component of the AdS5
contribution to the stress-energy tensor

—TO + Tl + T2 k1T1 k2T2 0. (C54)

Using the Virasoro constraint, the classical action is twice the kinetic piece

o h\
Sadss = 28hyslc = % / do dr (r7ki +r3k3) . (C.55)
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The other integrals of motion are

1 1
Iy :r% k2 (rorl 7‘17‘6)2 k2 (ror2 7‘27‘6)2,
I = 2 1 1\2 1 / /1\2 (056)
1=ry — k‘2 (7"07“1 7‘17‘0) + 7]&‘% — k‘% (riry —rory)”.

We can define I in a similar fashion, but it is not an independent integral, since —Iy +
L+, =—

We know that the range of the world-sheet coordinate o is infinite (from the S° part
of the solution), and that for large o both r1 and 7o vanish (as well as their derivatives),
while rg — 1. From this we easily conclude that the integration constants are Iy = 1 and
L =1,=0.

To solve these equations we define the coordinates (1 and (o which are the roots of the

equation
2 2 2
To ™ T2

G G-k -k

~0, (C.57)

and we find

e G- RG-R) G- BG-B)
0 ks “‘\/ ee-m 0 T\ mw-g - ©®

The integrals of motion Iy and I; lead to the equations

G-RG-B) GG

¢-¢ G¢-G
The ratio of those two equations is then simple to integrate. If we assume without loss of
generality that k1 < ko, then it turns out that for our system we can take k1 < (1 < ko < (o
and in the first equation in (C.59) there should be the negative sign while in the second
the positive one. The solution is given in terms of a constant ¢

G =+

(C.59)

kq arctanh G ko arccoth G + k1 arccoth 2 ko arccoth 2 =c. (C.60)
kg kl kg kl

(Gt = k) (G + k) V™2 [ (ke + G (G — ko) \™ _
<(C1 + kl)(Cz — k1)> <(/<;2 _ Cl)(Cz + k2)> =C. (C.61)

Note that this solution is valid for any torus. The radii sinf/2 and cosf/2 are en-

or

coded in the asymptotic values of r; and 7y whose ratio should approach tan(6/2).
In terms of the (’s, this corresponds to one of them ({;) approaching the constant
k1 k’g/\/k‘% sin?(0/2) + k3 cos2(0/2), while (» diverges.

So our solution has (; starting at this constant near the boundary of AdSs and de-
creasing to ki, while (o will start at infinity and decrease to ks. The constant C' in ([C.61))
is

k1
kg—\/k281n 2+/<:2(30829 \/kzsln 2+/<:2cos29+/<;1

(C.62)

ko + \/k‘% sin? g + k2 cos? g \/k‘2 sin? ¢ 5+ k2 C082 — Kk
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Is is not easy to solve for the (’s (or r’s) in terms of o, but that turns out not to be
necessary. The action can be evaluated without that

A
SAng, = £ /dU dr (—7‘62 + 7”/12 + 7”52)

) ¢ 2 - )
‘f/ ( >< et a e

=V /h dg+/%@ (€.63)

ki1k
172 0o
\/kl sin2 2+k% cos2 %

kik
—\/_ ki + kg — 172
\/k281n 2+/<:2(:os29

12

In the last expression the divergence was removed.
Together with the S° part ([C.47) one gets the total action

0 6 kik
S= -2k + \/k:% sin? 3 + k2 cos2 L2 V. (C.64)
\/k2 sin? ¢ + k3 cos? 9

D. Almost complex structure for S? and S°

In this appendix we provide an alternative, more geometrical understanding of the origin
of the almost complex structure J. The main clue comes from observing that our string
solutions satisfy

=1, (D.1)

and therefore reside inside an AdS, x S? subspace of AdSs x S® . It is then natural to look
for an almost complex structure on this subspace. To understand how this observation can
help we note that we could rewrite equation (D.]) as ztz# + 2*yty? = 1, which, up to a z
factor, is analogous to the equation of a 6-sphere embedded in (z#,4"). It will be therefore
insightful to review how we can construct an almost complex structure on S% in R7. To
understand how to proceed let us begin with a simpler case, which is the construction of
an almost complex structure on S2. This structure is by definition a linear endomorphism
on the tangent space of the sphere which satisfies

J:TS%* - T8 J?=—1. (D.2)
In terms of the usual embedding of the sphere in R3 let us consider the following linear
operator
0 —x3 T2
J = T3 0 —I7 . (D3)
—T2 X1 0

This J defines an almost complex structure on S?. To see that we first observe that .J
is a well defined map on T'S? because for any 7 = (p1,p2,p3) in the tangent space of
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¥ = (z1,x2,23) we have J(p) - & = 0. This says that J(p) is orthogonal to & and therefore
J maps tangent vectors into tangent vectors. For J to be an almost complex structure it
remains to prove that it squares to minus the identity, and indeed

—p1tx1T-p P1
Jz(P) =| p2tz2x-p | =—| P2 |- (D.4)
—p3+x32T-p p3

Note that the action of J on p can be simply thought of as the cross product & x p'.

Let us try to extend this construction. It is a fact that the only spheres which admit
an almost complex structure are S? (in which case J is also integrable) and S%.22 The
construction of an almost complex structure for the latter case can be carried over in
analogy to what done for the unit 2-sphere if we work with the octonion algebra @. An
octonion element can be written as

X = xg + x1€1 + T2eo + r3e3 + x4e4 + T5€5 + T + T7e7 (D.5)
where the algebra generators satisfy
e = —1, eiej = —eje;. (D.6)

We can think of S% as the hypersurface || = 1 with 2 € ImQ, the imaginary octonions
being obtained by setting zyp = 0. We will see that S®, when considered as the set of
unit norm imaginary octonions, inherits an almost complex structure from the octonion
multiplication [B].

If we want to construct an almost complex structure on S% using the analogy with S2
we need to define a cross product. Luckily a cross product between two vectors, satisfying
all the usual assumptions, exists only in dimensions 3 and 7. The cross product between
two octonions x and y is defined as

xxy = L0xy — yx) = Im (xy) (D.7)

where xy is the non-commutative and non-associative octonion product. If we work with
imaginary octonions the cross product reduces to the ordinary octonion multiplication.
The claim is that an almost complex structure J can be constructed as

J=xzxp, xS  pecT,st (D.8)

where x = (x1,22,73,24,25,%6,27) and p = (p1,p2,P3,P4,P5,P6, p7) are thought of as
imaginary octonions. Using a particular choice?® for the multiplication table one gets the

221t is widely believed, but not proved, that S® does not admit a complex structure.

23There is not a universal choice for the octonion multiplication table. The one used here has been chosen
to highlight the similarities with the almost complex structure J relevant to the discussion of the string
solutions.
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following matrix

0 —T7 Tg Ty —X4 —T3 T2
xT7 0 —x5 g I3 —T4 —I1
—xg x5 0 a7 —xo X1 —I4
J = —x5 —Tg — X7 0 I ) T3 (Dg)
ry —X3 T2 —X1 0 Ty —Xg
T3 x4 —x1 —T2 —x7 0 x5

—T2 X1 T4y —X3 Tg —Tj 0

In complete analogy to the S? case we can show that .J defines linear endomorphism on
the tangent space and that J?(p) = —p for any tangent vector p. This proves we have
constructed an almost complex structure on the unit 6-sphere. Using a notation similar
to (B-2() we can write the matrix Jij as

Note that up to z factors, J coincides with the almost complex structure J associated
to the Wilson loops, see (B.23), after the relabeling x5 — —yi1, £ — —y2, 7 — —y3. The
corresponding fundamental two-form reads?*

J = %JMNd$M A dzN
= z1(dx7e + drsg + drys) + wo(dxy7 + drss + drgg) + x3(drer + dres + dxyr)
+x4(drs1 + dres + dars) + x5(drig + desy + drer) + x6(dris + droy + dats)
+x7(droy + drsy + dxse). (D.11)

Note that, as was the case for J, this two-form is not closed but rather we have
dJ = 3(dx172 + dxr136 + dr145 + dX395 + dx2ss + drssr + drser). (D.12)

This form is the associative three-form ¢ preserved by the G2 group. The explanation for
the appearance of ¢ in this context is that G C SO(7) is the automorphism group of the
octonions.?® The reason for which d.J # 0 is the well known fact that S% is not Kéhler.

E. 2-dimensional YM in the WML & = —1 gauge

In this appendix we present an explicit computation in the £ = —1 generalized Feynman
gauge with WML prescription for the two-dimensional near-flat limit discussed in sec-
tion j.1.1. Since we know that the non-interacting graphs from our Wilson loops in four
dimensions in the Feynman gauge agree with the 2-dimensional propagators in this gauge,
we turned to the first interacting graphs, which appear at order A\2.

While we were not able to find agreement between the interacting graphs in four di-
mensions and two dimensions for a general loop, we present the calculation here nonetheless

#dx,, = dr, Adr, and dx,w, = do, A doy A dz,.
25 Also note that S = G/ SU(3).
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in the hope that it would aid in future explorations of the subject. To get some concrete
results we focused on the one case where the interacting graphs were calculated in four
dimensions — the circular loop. In this special example the two propagators in the £ = —1
gauge sum up to the (single) propagator in the light-cone gauge, hence the ladder diagrams
in the two gauges are equal. In the light-cone gauge there are no interactions and therefore
in our gauge the interaction graphs for the circle should all cancel, which we indeed verify.

We start by deriving the Feynman rules in this generalized gauge in the near-flat limit.
The Euclidean action reads

1

e 2 2 a
L=—|-(F%.)" 4+ = (0, A*")"+ 0,0 (D"¢)| , E.1
|7 g (A 0 (D7) (B.1)
where 7, s = 1,2 and
Ff =0, A%+ f AV AL, (Do) = 0pc® + AL (E2)
Choosing the gauge ¢ = —1 and using the light-cone coordinates z* = %(ml +iz?) (so that
the metric is g4 = 2) the action becomes
1 1 1
L= —|-Z Aa2__ _Aa2_ba @
+ /(0L AL = 0_AT)AL AT — S e AL A AT AC
1 1
+5 (04 AL ¢ + 3 F(0_b") A% ce| . (E.3)

The propagators for the gauge fields in the WML prescription are then

2 _ _
a a a r -
A+b+($>y) =0"Ayy (w,y) =0 v92d Y

2zt —yt’
2 ot
Adh = 6PN __(z,y) = o024 Y EA4
“_(z,y) (z,9) r—— (E.4)
where the normalization is fixed by requesting
1
?85* A++(‘T7 y) = (52(1' - y) ’ (E5)
2d
and similarly for A__. For the ghosts one has
b b b3 2
Adh(z.y) = 5" Agn(, ) = —0" %2 log(x — y)? (E-6)

The vertices can be easily read off from the action.

E.1 Three-point graphs

We now write down the interacting graphs starting with the ones with an internal 3-vertex.
On the loop there can be two A4 ’s and one A_ or two A_’s and one A, . These two cases
are one the complex conjugate of the other so it is sufficient to compute only one of them,
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say the first one, which we denote Efl_. Expanding the action e~ to first order and the

Wilson loop to third order, one obtains after performing all the Wick contractions

5@ _ # 1 iN(N?-1)
++- T
3IN 4g2, 4

deldngTg e(T17m273) /d2y X

x {fcfae;ﬁch-_@, 79) [ B (4:22)0y Da (9, 01) = Dy (4,20)0y Ay (v, 2)]

—(1H3)—(2H3)}. (E.7)

Here we have used that Tr (T°7°T¢) fo% = L N(N? — 1) and the symbol (71 7273) enforces
the path ordering through the antisymmetrization of 71, 7o, and 73.

We now proceed with the integration over y. The first term in curly brackets can be
explicitly written (up to the xfa:;xg structure and the constant factors in the propagators

which we do not include) as

[0 " —aD)er —a)  _
—

o)t - oD ) o
_ T T % /[d2y ( Ty — T3 _ Yo — 23 > . (E.8)
v -y (v~ —2)t —af) (v —x3)y" —23)

It is convenient to parametrize the position of the vertex as y* = geii‘z’. The integrals in

¢ are of the type

2m
do 27
. . = I(la] —1) =9 (1 —|b E.9
| ey = m el = D= 00— )] (£9)
where a,b € C and 9 is the step function. This identity can be easily proven starting from
2m

do 27
. =——21 —1). E.10
| w5 = = 2otlel - ) (E.10)

After integrating over ¢, equation (E.§) becomes

g (T~ w3 (@] —ay) /R pdp
0

+ + -+
T{ — Tqy drsxy —p

5 [0(r(13) —p) =d(p—r(n))] — (1 < 2), (E.11)
where we have introduced an IR cutoff R and parametrized x;t = T(;i)eiiTi.

= For conve-
nience, we will use in the following the shorthand notation r; = r(7;). The integral above

can be easily performed and yields

- - + o+ R2 — 4xz T
P ) )(x1+ 3) log ( M day) > (12, (E.12)
] — r{ + 15— 2rir3cos 113

where we have also introduced the notation 7;; = 7; — 7;. Including all the prefactors in
equation ([E.7) and summing over the permutations yields the final result

2

313272

n®)
+4- T — ot

%dTldngTg E(T1T2T3) [wfz?x;w ((xf — x;) log R2 + (El?))
1~ T2

+(@f — i) loglas —21)? + (a5 — ) log(wz — 23)?) — (1 = 8) = (2= 3)|,
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where we have expanded at large R and neglected terms of order 1/R?. Adding the complex
conjugate of this expression gives the total contribution of the 3-vertex graphs for a general
curve.

We can now specialize to the case of the circular loop z* = %ei” (for simplicity we
take a circle of unit radius, one could reinsert an arbitrary radius at the end by dimensional

analysis). In this case, the above expression yields

)\2

G
R 3125672

deldngTg e(m17273) | (Sin 791 + sin 732 + sin 7y3) log R*+ (E.14)
+ sin 712 log(2 — 2 cos T12) + sin To3 1og (2 — 2 cos To3) + sin 731 log(2 — 2 cos 113) |

Since the expression in square brackets is totally antisymmetric in 71, 7, and 73, one can
choose a fixed ordering of the 7’s, say 71 > 7 > 73, and multiply by 3!. The finite terms
not containing the log R? integrate to zero and the final result is Efl_ = g‘—; log R. The
total contribution of the three-point interaction graphs in the case of the circle is then

2

20 =5+ 39, =L igR. (E.15)

E.2 Self-energy graphs

We now compute the gluon self-energy graphs. We need to consider the 1-loop corrections to
the Efzr and Ef)_ graphs and their complex conjugates. These graphs receive contributions
from both gauge fields and ghosts running in the loop and are obtained by expanding the
Wilson loop to quadratic order in the gauge fields.

We start with the Efl graph. The ghost contribution reads

.9 2 2\ 2 2\ 2 2

4t _ — _ -
% dr dr /d2 d2w Li Ty {(y _‘Tl)(w _‘T2)+ 1<_>2}’
R b e s e

where the first factor of 1/2 comes from the Taylor expansion of e™¥. The gauge field run-
ning in the loop contributes with three graphs: One graph with a 4-vertex and two graphs
with two 3-vertices. In the first one of these two graphs with 3-vertices the propagators in
the loop are a A, and a A__, whereas in the second one they are two A__’s.

We find that the seagull graph is given by the following expression

) i 1 a4\’ 2
X (seagull) = N (—gg() <g> N(N*—1) x (E.17)

T
ng dTlde/dzyi,fi;(y vy )y wi)(y $i)=
m>7 (v~ =y )yt =)yt —23)

where we used the formal expression (y* —y™)/(y~ — y~) to indicate the propagator in

the limit of coincident points.
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The graph with internal A, and A__ propagators reads

12 (1 \* (g2 4N(N2—1) 2 2.4t
ov (o) (8) “05 [ anan [ dvduitiss
Ty — Ty 1
— (1 2
X{y‘—w‘ ((y+—w1+)(w+—x§) (e )>+
+ T = N o~ - -
Yy —w (y~ —a )(w™ —xy) ) <y —w )}
1-2))0, 0, (L= )1
o (b 0 - 2) oo (5

The second graph with two A__ propagators gives a term which exactly cancels the ghost

(E.18)

contribution equation (JE.1q) and another term which is equal to the last term in equa-
tion ([E.1§) except that the factor

y —w
Oy Oy~ <7y+ — w+> (E.19)
is replaced by its complex conjugate. Let us write these two terms more explicitly
y —w _ o3 (Y —w _ 2
8y78w7 <y+_7u)+> +c.c. = —(9y, <y+_7u)+> 4+ c.c. = —871'(5 (y — w), (E20)

where we have used equation ([E.§) and its complex conjugate. This term containing the &

d

function cancels then the seagull contribution ([E.1§).
Similarly for »@ one finds that the ghost contribution is given by

) 2 2\ 2 2\ 2 2
(2) i 1 924 90\ —NWN*-1)
% === (32) (=) —— E.21
+_(gh08 ) N <29§d> <47T> <27T> 2 x ( )
% / dTldTQ/d2y d2w ‘foQ_(y_ - ‘Tl_)(w—l— B .Z';_) )
T1>T2 (y+ - w*)(y‘ — w‘)(y+ — a:f)(w— — x2_)

As for the gluons running in the loop, now only the graph with two 3-vertices, one A,

and a A__ contributes (there is no seagull graph contributing to Ef)_) This is given by

2 2 2\ 4 2
(2) o 1 954 N(N=®—-1)
X7 (gluon) = N <—4Q§d> <27T> — X (E.22)
i (=) ™ — o)
X dTldTg/d2y d*w L2 2 L — .
/nzm (v —wh)(y~ —w )yt —af)(w™ —a3)

Putting together all the pieces one obtains

2 /1 \2 /g2 \" N(N2-1)
2@ 5w _ ! 2d ) T T2 / drid / d*y d®
2 N \ 443, 2m 2 > Tan yawx

ifiy ay —ay 1
X{ 122 yi—wz— <(y+—xf)(w+—x;) _(1<_>2)> T (E.23)

‘e Yy —ry _ yt -y
T <(y‘—w_)(y+—ﬂff)(w_—xz_) (y+—w+)(y+—a:f)(w——x2‘)> }
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Adding the complex conjugate of this expression gives the total contribution of the self-
energy graphs.

We start by evaluating the first term in equation (E.23), corresponding to E( ) As
before, we use polar coordinates for the integration over the internal vertices, by deﬁning

yt = geii¢ and wt = %eii’/’. The generic loop is parameterized as :E;t = %eii”, where
r; = r(7;). Computing first the integrals over ¢ and ) with the help of (E.9), we get
1
d2 d2 —
/ i )yt - )W —af)

= 1672 / / pg dpdg e [19(p —&) -9 - rz)} [19(62 —r2p) —V(p— m)]

— 1672 [/ dg/ dp+/ dp/ d¢ — / d,o/ d{] x2p, (E.24)

where R is the large distance cutoff. The remaining integrals can be easily performed.
Expanding at large R, one finds that quadratic divergences cancel and the final result for

the integral in equation ([E.24)) is
- - 1
1672 (z] — a5 )<log R% 41 —log(r} + 73 — 2ryro cos 7'12)> +0 <R2> . (E.25)

Including all the prefactors in equation ([E.23) as well as the contribution obtained by

exchanging x; and 9, we thus obtain
2
Zf}r A / dridry #1if (x7 — 25)?( log R* + 1 —log(z1 — 22)* | . (E.26)
32772 T1>To

We integrate now the second term in equation (), which corresponds to Ef)_ We
proceed as before by first integrating over ¢ and 1 using identities analogous to (E.9), and
then we integrate over the radial directions p and £ with an IR cutoff R. After expanding
at large R the final result for the integrals on the internal vertices is

2, Pw Yy —zy B yt —ay _
/d ya <(y‘—w‘)(y+—$1+)(w‘ —zy)  (yt —wh)(yt —zf)(w- —%‘))

= 872 [Rz - (r% + r% — 27179 cos T12) log R*+

—i—(r% + 7‘% — 21179 COS T12) log(T% + 7‘% — 2rqre cos T12) + 6331_95;_ — r% — 7‘2] (E.27)

The quadratic divergence appearing here cancels out for a general curve once we sum the

(2)

contribution of the complex conjugate graph 37 . Indeed, the R? term is then proportional

to
b 1 L
drdrs (ml Ty + c.c.) = dridroz1-T9=0. (E.28)
T12>T2 T1>T2
Including the prefactors in ([E.23), we thus get
@ , ¢ A . 2100 B2
YUY = —— dridry &7 %5 {— (x1 — x2)”log R+
647'('2 L >To
+ (z1 — 29)* log(zy — 22)* + 6z — 13 — r%] + c.c.

(E.29)
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We now specialize to the circle xfﬁ = %eﬂ”. From ([E.2() we readily obtain

)\2 21 1
Efl D ) — / dm / dry(1 — cos Ty2)  log R? + 1 — log(2 — 2 cos 712)
1287'('2 0 0
)\2
= 2 E.
3 og R, (E.30)
while (E:29) yields
2 21 T1
@ ,w@ _ A 3
E+_ + E_+ == —m/o dTl/O d7'2 |:Z — COS T12 + (E31)
+ cos 112(1 — cos T12) ( —log R? + log(2 — 2 cos 7'12))]
)\2
= -1 .
5 og R

Recalling the contribution of the 3-vertex (E.1§), we see that for the circle the sum of the
interacting graphs at this order vanishes as expected

2@ 456 =0, (E.32)
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