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1. Introduction

The AdS/CFT correspondence [1 – 3] relates N = 4 supersymmetric Yang-Mills (SYM)

theory in four dimensions and string theory on AdS5 × S5. One calculates quantities at

weak coupling using the gauge theory description and at strong coupling using string theory

techniques, but usually the ranges of validity of the two calculations do not overlap and

one cannot compare the perturbative results with those derived from string theory.

Some notable exceptions to this last statement do exist. For example the Bethe-ansatz

techniques for calculating the anomalous dimensions of local operators have allowed to

interpolate from weak to strong coupling. One particularly striking example are the recent

results on the cusp anomalous dimension [4 – 9]. An older example of such an interpolation

is the circular Wilson loop operator, whose expectation value calculated from the gauge

theory point of view seems to be captured by a matrix model [10, 11]. These results agree

with string calculations including an infinite series of corrections in 1/N [12 – 14]1 as well

as some proposed string calculations valid to all orders in 1/
√
g2
YMN [24].

Finding such examples is a subtle art-form, and one has to progress by tiny incremental

steps from trivial quantities to more complicated ones. For the spectrum of local operators

the starting point were long supersymmetric operators and their small excitations [25].

Later it was understood that this problem is related to the existence of certain integrable

spin-chains [26]. Bethe-ansatz techniques to calculate the spectrum to all loop order in

perturbation theory were then developed and their predictions matched to the computation

of quantum corrections to the semiclassical string result, see [27 – 32] and references therein.

While the understanding of Wilson loops is much more fractured, the cases that are

understood have again been obtained by starting with simple examples and generalizing

on them. In the case of the circular loop, it can be related by a conformal transformation

to the trivial straight line, where the difference between them is due to a subtle change in

the global properties of the loop. Then if one considers two local deformations of the line

1For these probe brane computations see also [15 – 19], while fully back-reacted geometries dual to Wilson

loops are studied in [20 – 23].
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or circle they can be analyzed again using spin-chain techniques [33]. Another family of

Wilson loops that is well understood was constructed by Zarembo [34], and can also be

considered as a generalization of the straight line. Like the line, these loops have trivial

expectation values, and we will review them shortly.

In this paper we elaborate on the family of supersymmetric Wilson loops introduced

in [35, 36] and on some techniques we can use to compute their expectation values. These

loops are similar to the ones constructed by Zarembo, but their expectation values, in

general, are complicated functions of gYM and N . Instead of generalizing on the straight

line, they may be viewed as generalizations of the circle. As we will show, despite their

complexity, in many cases there are natural guesses for what these functions are. We do

not have yet the full solution for all the loops in this class, but we are optimistic that these

loops reside precisely in that regime where exact calculations are within reach of current

technology. It is also our hope that this construction will lead to further developments

that will allow to calculate more Wilson loop operators and derive more exact results in

the AdS/CFT correspondence.

As further motivation for the study of Wilson loops we would like to mention that there

are some interesting connections between local operators and Wilson loops. One example

is the relation between the cusp anomaly of a light-like Wilson line and the anomalous

dimension of large spin twist-2 operators [37 – 46]. Quite remarkably light-like Wilson

loops with cusps have also been conjectured by Alday and Maldacena to compute gluon

scattering amplitudes [47].

In the rest of the introduction we will review the construction of our Wilson loop

operators and provide more details on the proof that they are supersymmetric.

In section 2 we will go over some specific examples of families of operators with en-

hanced supersymmetry. The most general case in our class will preserve two supercharges,

but we will show some cases with four, eight and sixteen unbroken supersymmetries. Some

of the information there has already been anticipated in [35], but we go over it in much

more detail and include many new results.

Section 3 contains the basic characterization of the string duals of our Wilson loops.

Beyond the standard claim that they should be described by semi-classical string solutions,

we find a first-order differential equation satisfied by the strings. This equation is derived

by considering a novel almost complex structure on an AdS4 × S2 subspace of AdS5 × S5.

Requiring that the strings are pseudo-holomorphic with respect to this almost complex

structure leads to the correct boundary conditions on the strings and to preservation of the

expected supersymmetry. The string world-sheets will be interpreted as calibrated surfaces

and their expectation values computed in terms of the integral of the calibration form on

the world-sheet. The results in this section have not been published before.

In section 4 we discuss Wilson loops restricted to an S2 subspace of space-time and

provide some evidence, both from the gauge theory and from string theory, that those loops

can be evaluated by a perturbative prescription for two-dimensional bosonic YM expanding

on [36].

We complete the paper with a series of appendices. In appendix A we collect our

conventions for the superconformal algebra while in appendix B we provide all the details for
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the computation of the various supergroups preserved by the loops introduced in section 2.

Appendix C is dedicated to obtaining the explicit string surfaces in AdS5×S5 corresponding

to some of the loops presented in the text. In appendix D we review the construction of

the almost complex structure for S2 and S6 as a warm-up for the discussion of the almost

complex structure relevant to our loops presented in section 3.1. Finally, in appendix E

we present a sample computation in the two-dimensional Yang-Mills theory for our loops

restricted to an S2.

1.1 The loops

The gauge multiplet of N = 4 SYM includes all fields in the theory: One gauge field,

six real scalars and four complex spinor fields and it is then natural to incorporate them

into the Wilson loop operator. We will consider the extra coupling of the scalars ΦI (with

I = 1, . . . , 6) so the Wilson loop is [48, 49]

W =
1

N
Tr P exp

∮
dt(iAµẋ

µ(t) + |ẋ|ΘI(t)ΦI) , (1.1)

where xµ(t) is the path of the loop and ΘI(t) are arbitrary couplings. A necessary re-

quirement for SUSY is that the norm of ΘI be one. But that alone leads only to “local”

supersymmetry. If one considers the supersymmetry variation of the loop, then at every

point along the loop one finds another condition for preserved supersymmetry. Only if all

those conditions commute, will the loop be globally supersymmetric.

A simple way to satisfy this is if at every point one finds the same equation. This

happens in the case of the straight line, where ẋµ is a constant vector and one takes also

ΘI to be a constant. This idea was generalized in a very ingenious way by Zarembo [34],

who assigned for every tangent vector in R
4 a unit vector in R

6 by a 6×4 matrix M I
µ and

took |ẋ|ΘI = M I
µẋ

µ. That construction guarantees that if a curve is contained within a

one-dimensional linear subspace of R
4 it preserves half of the super-Poincaré symmetries

generated by Q and Q̄ (see the notations in appendix A). Inside a 2-plane it will preserve

1/4, inside R
3 1/8 of them, and for a generic curve 1/16. In special cases the loops might

also preserve some of the superconformal symmetries, generated by S and S̄. We will refer

to these loops often throughout the paper and call them “Q-invariant loops”.

An amazing fact about those loops is that their expectation values seem to be trivial,

with evidence both from perturbation theory, from AdS and from a topological argu-

ment [34, 50 – 53]. This construction can be associated to a topological twist of N = 4

SYM, where one identifies an SO(4) subgroup of the SO(6) R-symmetry group with the

Euclidean Lorentz group. Under this twist four of the scalars become a space-time vector

Φµ ≡M I
µΦI and in the Wilson loop we use a modified connection Aµ → Aµ + iΦµ.

The construction we will discuss in the rest of this paper is quite similar to this, but

the expectation value of the Wilson loops will in general be non-trivial. A simple way to

motivate our construction is by considering a different twist, where three of the scalars are

transformed into a self-dual tensor

Φµν = σiµνM
i
IΦ

I , (1.2)
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and the Wilson loop will involve the modified connection

Aµ → Aµ + iΦµνx
ν . (1.3)

The important ingredient in this construction are the tensors σiµν . They can be defined

by the decomposition of the Lorentz generators in the anti-chiral spinor representation (γµν)

into Pauli matrices τi
1

2
(1 − γ5)γµν = iσiµντi , (1.4)

where we included the projector on the anti-chiral representation (γ5 = −γ1γ2γ3γ4). The

matrix M i
I appearing in (1.2) is 3×6 dimensional and is norm preserving, i.e. MM⊤ is the

3× 3 unit matrix. When we need an explicit choice of M we take M1
1 = M2

2 = M3
3 = 1

and all other entries zero.

These σ’s are also essentially the same as ’t Hooft’s η symbols used in writing down the

instanton solution, which is not surprising, since there the gauge field is self-dual. Finally

another realization of them is in terms of the invariant one-forms on S3

σR,L1 = 2
[
±(x2dx3 − x3dx2) + (x4dx1 − x1dx4)

]

σR,L2 = 2
[
±(x3dx1 − x1dx3) + (x4dx2 − x2dx4)

]

σR,L3 = 2
[
±(x1dx2 − x2dx1) + (x4dx3 − x3dx4)

]
,

(1.5)

where σRi are the right (or left-invariant) one-forms and σLi are the left (or right-invariant)

one-forms (adhering to the conventions of [54]). We chose our construction to rely on the

right-forms (and the anti-chiral spinors) so

σRi = 2σiµνx
µdxν . (1.6)

These two realizations of σiµν will be important in our exposition. The relation to the

spinor representation of the Lorentz group will be crucial for the proof of supersymmetry

and the relation to the one-forms on S3 will be important for the geometric understanding

and classifications of our loops.

The Wilson loops we study in this paper can then be written in the following two ways,

first in form notation and then explicitly2

W =
1

N
Tr P exp

∮ (
iA+

1

2
σRi M

i
IΦ

I

)
=

1

N
Tr P exp

∮
dxµ

(
iAµ − σiµνx

νM i
IΦ

I
)
.

(1.7)

One can of course also package the last expression in terms of the modified connection

Aµ + iΦµνx
ν .

Note that this construction involves introducing a length-scale, which can be seen by

the fact that the tensor (1.2) has mass dimension one instead of two. So this construction

would seem to make sense only when we fix the scale of the Wilson loop. Indeed the oper-

ator (1.7) will be supersymmetric only if we restrict the loop to be on a three dimensional

2It is tempting to couple the three remaining scalars Φ4, Φ5 and Φ6 with the left-forms σL
i , however this

in general does not yield a supersymmetric loop.
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sphere. This sphere may be embedded in R
4, or be a fixed-time slice of S3 × R. We will

always take it to be of unit radius, but it is simple to generalize to other radii by putting

the radius factors where they are required by dimensionality.

1.2 Supersymmetry

We can now show that our ansatz (1.7) leads to a supersymmetric Wilson loop. The

supersymmetry variation of the Wilson loop will be proportional to

δW ≃
(
iẋµγµ − σiµν ẋ

µxνM i
Iρ
Iγ5
)
ǫ(x) , (1.8)

where γµ and ρI are respectively the gamma matrices of SO(4) and SO(6), the Poincaré

and R-symmetry groups and they are taken to commute with each-other. Note that later

in section 3.1, where we discuss the strings in AdS5 × S5 that describe our loops, we will

use 10-dimensional notations, where all gamma matrices anti-commute. This is achieved

by the simple replacement ρIγ5 → ρI . In (1.8) ǫ(x) is a conformal-Killing spinor given in

R
4 by two arbitrary constant 16-component Majorana-Weyl spinors as

ǫ(x) = ǫ0 + xµγµǫ1 . (1.9)

ǫ0 is related to the Poincaré supersymmetries while ǫ1 is related to the super-conformal

ones.

To simplify the expressions we eliminate the matrix M so there is an implicit choice of

three scalars (using the index i = 1, 2, 3). Then, using the fact that xµxµ = 1, we rearrange

the variation of the loop as

δW ≃ iẋµxν
(
γµνǫ1 + iσiµνρ

iγ5ǫ0
)
− iẋµxνxηγη

(
γµνǫ0 + iσiµνρ

iγ5ǫ1
)
. (1.10)

Requiring that this variation vanishes for arbitrary curves on S3 leads to the two equations

γµνǫ1 + iσiµνρ
iγ5ǫ0 = 0 ,

γµνǫ0 + iσiµνρ
iγ5ǫ1 = 0 .

(1.11)

These equations are not hard to solve, since σiµν are related to γµν in the anti-chiral

representation (1.4). We just need to decompose ǫ0 and ǫ1 into their chiral and anti-chiral

components (labeled respectively by a + and − superscript) and impose

τ iǫ−1 = ρiǫ−0 , ǫ+1 = ǫ+0 = 0 . (1.12)

To solve this set of equations we can eliminate for example ǫ−0 from (1.12) to get

iτ1ǫ
−
1 = −ρ23ǫ

−
1 , iτ2ǫ

−
1 = −ρ31ǫ

−
1 , iτ3ǫ

−
1 = −ρ12ǫ

−
1 . (1.13)

This is a set of constraints that are consistent with each other. However it is easy to see

that only two of them are independent since the commutator of any two give the remaining

equation. With two independent projectors, we are thus left with two independent com-

ponents of ǫ−1 , while ǫ−0 depends on ǫ−1 . So we conclude that for a generic curve on S3 the

Wilson loop preserves 1/16 of the original supersymmetries.
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For special curves, when there are extra relations between the coordinates and their

derivatives, there will be more solutions and the Wilson loops will preserve more super-

symmetry. We will demonstrate this in some special cases below.

To explicitly find the two combinations of Q̄ and S̄ which leave the Wilson loop invari-

ant, notice that in singling out three of the scalars the R-symmetry group SU(4) is broken

down to SU(2)A × SU(2)B , where SU(2)A corresponds to rotations of Φ1,Φ2,Φ3 while

SU(2)B rotates Φ4,Φ5,Φ6. Then we recognize that the operators appearing in (1.13) are

just the generators of SU(2)R, the anti-chiral part of the Lorentz group, and the generators

of SU(2)A, and the above equations simply state that ǫ−1 is a singlet of the diagonal sum of

SU(2)R and SU(2)A, while it is a doublet of SU(2)B . More explicitly, we can always choose

a basis in which ρi act as Pauli matrices on the SU(2)A indices, such that the equations

above become

(τRk + τAk )ǫ−1 = 0, k = 1, 2, 3. (1.14)

If we split the SU(4) index in ǫ−1 as

ǫ1, α̇A = ǫ1, α̇ȧa , (1.15)

where ȧ and a are respectively SU(2)A and SU(2)B indices, then the solution to (1.14) can

be written as

ǫ1 a = εα̇ȧǫ
1, α̇ȧ
a . (1.16)

Using any of the equations in (1.12) we can determine ǫ0

ǫ−0 = τR3 ρ
3ǫ−1 = τR3 τ

A
3 ǫ

−
1 = −ǫ−1 , (1.17)

where in the last equality we used (1.14). Our conclusion is then that the Wilson loops we

introduced preserve the two supercharges

Q̄a = εα̇ȧ
(
Q̄aα̇ȧ − S̄aα̇ȧ

)
. (1.18)

Besides these fermionic symmetries, our Wilson loop operators obviously preserve the

bosonic symmetry SU(2)B . Using the commutation relations of the superconformal al-

gebra given in (A.13), it is easy to verify that the above supercharges, together with the

SU(2)B generators Tab, form the following superalgebra

{
Q̄a , Q̄b

}
= 2T ab ,

[
T ab , Q̄c

]
= εcaQ̄b − 1

2
εbaQ̄c ,

[
T ab , T cd

]
= εcaT bd + εdbT ac .

(1.19)

This is an OSp(1|2) subalgebra of the superconformal group.

1.3 Topological twisting

As mentioned from the onset, this construction is related to a topological twisting of N = 4

SYM. The twisting consists of replacing SU(2)R with the diagonal sum of SU(2)R and
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SU(2)A, which we can denote as SU(2)R′ , so that the twisted Lorentz group is SU(2)L ×
SU(2)R′ .

This twisting was first considered in [55] and further studied in [56] (it is their case

ii)). After the twisting the supercharges decompose under SU(2)L × SU(2)R′ × SU(2)B as

(2,1,2,2) + (1,2,2,2) → (2,2,2) + (1,3,2) + (1,1,2). (1.20)

From the above it is clear that the two supercharges Q̄a are in the (1,1,2), and therefore

they become scalars after the twisting. As usual, one would then like to regard them as

BRST charges, and the Wilson loops will be observables in their cohomology.

What is new in our case is that those would-be BRST charges are not made only

out of the Poincaré supersymmetries Q, but include also the super-conformal ones S.

Consequently those Q̄a do not anti-commute, but rather they close on the SU(2)B gener-

ators (1.19). This is not a major obstacle, in the resulting topological theory one would

have to consider invariance under Q̄a up to SU(2)B rotations, which is what is done in the

framework of equivariant cohomology.

We will not pursue this direction further here.

2. Examples

We will now present some examples of Wilson loop operators with enhanced supersym-

metry which are special cases of our general construction. Among several new interesting

operators, we will be also able to recover some previously known examples, like the well

studied 1/2 BPS circular Wilson loop [10, 11] and the 1/4 BPS circle of [24], and even a

subclass (those living in a R
3 subspace) of the Q-invariant Wilson loops [34] will arise in

a particular “flat limit”. To illustrate the richness of the construction, we will determine

in detail the explicit supersymmetries and various supergroups preserved by the different

examples. The relevant notations and conventions are given in appendix A, and some tech-

nical details of the calculations are collected in appendix B. For a comprehensive reference

on superalgebras see for example [57].

2.1 Great circle

We can first show that the well known 1/2 BPS circular Wilson loop is included in our

construction as a special example, this is simply a great circle on the S3. In fact, it is easy

to see that by our construction a maximal circle will couple to a single scalar. For example,

for a circle in the (1, 2) plane

xµ = (cos t, sin t, 0, 0) (2.1)

the pull-back on the loop of the left-invariant one forms (1.5) appearing in (1.7) is

σR1 = σR2 = 0 ,
1

2
σR3 = dt , (2.2)

so that the corresponding Wilson loop will couple only to Φ3. As a consequence, vanishing

of the supersymmetry variation leads to the single constraint

ρ3γ5ǫ0 = iγ12ǫ1 , (2.3)

– 8 –



J
H
E
P
0
5
(
2
0
0
8
)
0
1
7

and therefore the loop preserves 16 (8 chiral and 8 anti-chiral) combinations of Q and S

and is indeed a 1/2 BPS operator. Using (2.3) we may write down the sixteen supercharges

as

QA = iγ12Q
A +

(
ρ3S

)A
, Q̄A = iγ12Q̄A −

(
ρ3S̄

)
A
, (2.4)

where A = 1, . . . , 4 and for simplicity we have omitted Lorentz indices. Furthermore, it is

not difficult to show that the 1/2 BPS circle also preserves the bosonic group SL(2,R) ×
SU(2)×SO(5). Here, the SO(5) ⊂ SO(6) simply follows from the fact that the loop couples

to a single scalar. The remaining symmetries SL(2,R)×SU(2) correspond to the subgroup

of the conformal group SO(5, 1) which leaves the loop (2.1) invariant. It is not difficult to

see that the SU(2) factor is generated by

L1 ≡ 1

2
(P3 −K3) , L2 ≡ 1

2
(P4 −K4) , L3 ≡ J34 , (2.5)

where Pµ are translations, Kµ are special conformal transformations and Jµν are Lorentz

generators which can be realized geometrically as

Pµ = −i∂µ , Kµ = −i(x2∂µ − 2xµx
ν∂ν) , Jµν = i(xµ∂ν − xν∂µ) . (2.6)

Finally, the SL(2,R) symmetry is the Möebius group in the (1, 2) plane generated by

I1 ≡ 1

2
(P1 +K1) , I2 ≡ 1

2
(P2 +K2) , I3 ≡ J12 . (2.7)

All these bosonic symmetries, together with the above supercharges, form the supergroup

OSp(4⋆|4) (for an explicit calculation of this superalgebra, see for example [58]). Notice

that this is the same supergroup preserved by the 1/2 BPS straight line (although the

explicit realization in terms of generators of PSU(2, 2|4) is different). This is of course

expected since a straight line and a circle are related by a conformal transformation (an

inversion).

A 1/2 BPS straight line, being of the class invariant under Q, has trivial expectation

value. On the other hand the 1/2 BPS circle is non-trivial. In perturbation theory, using

the Feynman gauge, the combined gauge-scalar propagator between two points along a

loop is a non-zero constant, so that the problem of summing all non-interacting graphs

(ladder diagrams) is captured by the Hermitian Gaussian matrix model [10, 11]

〈W 〉 =
1

Z

∫
DM 1

N
Tr eM exp

(
−2N

λ
TrM2

)
, (2.8)

where M is an N × N Hermitian matrix and λ = g2
YMN is the ’t Hooft coupling. It

was checked in [10] that interacting graphs do not contribute to order λ2, leading to the

conjecture that they may never do so. A more general argument explaining the appearance

of the matrix model was given in [11], using the above mentioned fact that the circular loop

is related to the straight line by a conformal transformation. This would naively imply

that both Wilson loops are trivial, however the conformal transformation is singular, and

the difference between the two operators is localized at the singular point, leading then to

a matrix model. Notice however that this argument does not imply that the matrix model

– 9 –
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has to be Gaussian, and it is still an open problem to prove that (2.8) fully captures the

VEV of the 1/2 BPS circle. Nonetheless, this conjecture has so far passed an extensive

series of non-trivial tests. For example, the large λ, N limit of ( 2.8) can be matched against

the classical action of a string world-sheet in AdS, and certain 1/N corrections were also

correctly reproduced by D-branes corresponding to Wilson loops in large representations

of the gauge group [12, 14, 15]. A new possible point of view on the matrix model will be

discussed in section 4, where we will argue that all loops inside a great S2 ⊂ S3 (including

in particular the 1/2 BPS circle) seem to be related to the analogous observables in the

perturbative sector of two-dimensional Yang-Mills, which can indeed be exactly solved in

terms of the same Gaussian matrix model.

2.2 Hopf fibers

A new interesting system contained in our general construction can be obtained by using

the description of S3 as an Hopf fibration, namely as a S1 bundle over S2. Explicitly, one

can write the S3 metric as

ds2 =
1

4

(
dθ2 + sin θ2dφ2 + (dψ + cos θ dφ)2

)
, (2.9)

where the range of the Euler angles is 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤ 4π. The S1

fiber is parameterized by ψ, while the base S2 by (θ, φ). These coordinates are related to

the cartesian xµ by

x1 = − sin
θ

2
sin

ψ − φ

2
, x2 = sin

θ

2
cos

ψ − φ

2
,

x3 = cos
θ

2
sin

ψ + φ

2
, x4 = cos

θ

2
cos

ψ + φ

2
.

(2.10)

Consider now a Wilson loop along a generic fiber. This loop will sit at constant (θ, φ),

while ψ varies along the curve. The fibers are non-intersecting great circles of the S3, so

they will each couple to a single scalar, but the interesting fact is that all the circles in the

same fibration will couple to the same scalar, in this case Φ3. An easy way to check this is

to write the left-invariant one forms (1.5) in terms of the Euler angles

σR1 = − sinψ dθ + cosψ sin θ dφ ,

σR2 = cosψ dθ + sinψ sin θ dφ ,

σR3 = dψ + cos θ dφ .

(2.11)

If θ and φ are constant and ψ(t) = 2t (with 0 ≤ t ≤ 2π), it follows that along the loop

σR1 = σR2 = 0 and 1
2σ

R
3 = dt, as in (2.2). An equivalent way to express this fact is that a

fiber only follows the vector field ξR3 = ∂ψ dual to σR3 . Since it is a great circle, a single

loop like this is 1/2 BPS and without loss of generality we can take it, as before, to sit in

the (1, 2) plane (i.e. θ = π).

The new feature we want to consider is when there is more than a single fiber, with

the other one at (θ, φ). If they are not coincident then the second one will break some of

the symmetry of the single circle. As we shall show, it will project down to the anti-chiral

supercharges and reduce the bosonic symmetries to U(1) × SO(5).
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But before we get there, it is instructive to see how the symmetries of the single great-

circle act on the other fiber. The three-sphere is mapped to itself by an SO(4, 1) subgroup

of the conformal group generated by the rotations Jµν and by 1
2(Pµ + Kµ). We have

seen in the previous subsection (2.7) that an SL(2,R) subgroup of this group, obtained by

restricting to µ, ν = 1, 2, leaves a circle in the (1, 2) plane invariant. So while it will not

move the first fiber at θ = π, this SL(2,R) will act non-trivially on the other fiber.3

To see this explicitly, we write the action of the generators (2.7) in terms of the Euler

angles as

I1 = i
sin(ψ − φ)/2

sin θ/2

(
sin θ ∂θ − cot

ψ − φ

2
(∂φ − ∂ψ)

)
,

I2 = −i cos(ψ − φ)/2

sin θ/2

(
sin θ ∂θ + tan

ψ − φ

2
(∂φ − ∂ψ)

)
,

I3 = −i(∂φ − ∂ψ) .

(2.12)

Since all the loops are invariant under ψ, we can ignore all the ∂ψ, and then the three

generators act as conformal transformations on the base.

These symmetries allow us to map any point on the base (excluding θ = π) to any

other. Therefore, when considering two fibers we can take the second one at θ = 0, which

means that it lies in the (3, 4) plane.

With this it is easy to check the supersymmetries preserved by the two fibers. The

first circle imposes the constraint (2.3)

ρ3γ5ǫ0 = iγ12ǫ1 , (2.13)

and analogously the new one (keeping note of the orientation) will impose

ρ3γ5ǫ0 = −iγ34ǫ1 , (2.14)

In particular we see that γ12ǫ1 = −γ34ǫ1, so ǫ1 is a negative eigenstate of γ5 = −γ1γ2γ3γ4,

i.e. it is anti-chiral, so the loops preserve half the supersymmetries of a single circle, or are

1/4 BPS. By the symmetry argument above this is true for any other fiber (or more than

two fibers), which can also be verified directly, by a somewhat tedious calculation.

The corresponding supercharges preserved by the system will be essentially the same

as the ones associated to the 1/2 BPS maximal circle (2.4), except that we only select the

negative chirality

Q̄A = iγ12Q̄A −
(
ρ3S̄

)
A
. (2.15)

As for the bosonic symmetries, notice that of the SL(2,R)×SU(2)×SO(5) symmetry of the

single fiber, the only remaining symmetry on the space-time side that remains is rotations

of the ψ angle

JR3 =
1

2
(J12 − J34) . (2.16)

Besides this, we have of course the SO(5) symmetry following from the fact that the fibers

only couple to one scalar. These bosonic symmetries form together with the fermionic

3We thank Lance Dixon for suggesting this.
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generators (2.15) the supergroup OSp(2|4), whose even part is indeed SO(2) × Sp(4) ≃
U(1) × SO(5). This supergroup can be seen as the subgroup of OSp(4∗|4) obtained by

dropping the positive chirality charges in (2.4). From the point of view of the algebra, it

is also natural to understand why the symmetries involving Pµ and Kµ are lost for the

Hopf fibers system, as those symmetries arise from commutators of charges in (2.4) with

opposite chirality.

The symmetry argument above allowed us in the case of two circles to move them

relative to each-other. In perturbation theory one finds an even stronger statement, the

combined gauge-scalar propagator between any two points on any two fibers is the same

constant as for the single circle.

Consider for example the propagator between a point xµ(t; θ0, φ0) on one fiber and a

point yµ(s; θ1, φ1) on a second fiber. Since both circles only couple to Φ3, the propagator

is

〈(
i ẋµAaµ(x) + Φa

3(x)
)(
i ẏµAbµ(y) + Φb

3(y)
)〉

=
g2
YM

4π2

1 − ẋ · ẏ
(x− y)2

δab =
g2
YM

8π2
δab , (2.17)

as can be checked using the explicit parametrization (2.10). Thus this system of non-

intersecting circles on S3 is reminiscent of the BPS system of parallel straight lines in

flat space. In that case the lines do not interact between each other (the propagators

vanish) and the observable is trivial. Here we find that the fibers do interact, however the

“interaction strength” is just a constant independent of the relative distance.

Since the propagator is a constant, all ladder diagrams contributing to the correlator

of several Hopf fibers can be exactly summed up using the same Gaussian matrix model

describing the 1/2 BPS circle, but with a different insertion compared to (2.8). Concretely,

for a system made of k fibers, the ladder diagrams contribution will be equal to

〈Wk〉ladders =

〈(
1

N
Tr eM

)k〉

m.m.

, (2.18)

where the expectation value on the right hand side is taken in the Gaussian matrix model

as in (2.8). Of course it would be an interesting non-trivial calculation to also evaluate

the contribution (if any) of diagrams with internal vertices. At large N the correlator

in (2.18) will be the same as k non-interacting circles and will be reproduced at strong

coupling by k disconnected string surfaces in AdS. An interesting problem, which we will

not further pursue here, would be to study the possible contribution of the connected string

configuration in AdS.

2.3 Great S2

An infinite subfamily of operators which turns out to be very interesting is obtained by

restricting the loop to lie on a great S2 inside S3. For concreteness, we may define this

two-sphere by the condition x4 = 0. From the definition of the invariant one forms one can

see that on this maximal S2 the left and right forms are no longer independent, rather

σLi = −σRi = −2εijkx
j dxk , (2.19)
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which can also be written as a cross-product. Then it is not difficult to realize that (1.10)

has more solutions. Using that the left forms are related to the action of the Lorentz

generators on positive chirality spinors

dxµxνγµνǫ
+ =

i

2
σLi τ

L
i ǫ

+ , (2.20)

the relation σLi = −σRi implies that (1.10) is solved not only by the antichiral spinors

satisfying

τRi ǫ
−
1 = ρiǫ

−
0 , (2.21)

but also by positive chirality spinors obeying

τLi ǫ
+
1 = −ρiǫ+0 . (2.22)

Combining the two chiralities, this can be also written as

iγjkǫ1 = εijkρiγ
5ǫ0 . (2.23)

So, contrary to the general S3 case in (1.12), we see that now the constraints are not chiral

and hence the supersymmetries are doubled. The generic Wilson loop on S2 will therefore

give a 1/8 BPS operator. One can solve the constraints in the same way as described in

section 1.2, but we will now get two copies of the solution, one for each chirality. The four

supercharges may be written explicitly as

Qa = (iτ2)
α
ȧ

(
Qȧaα + Sȧaα

)
, Q̄a = εα̇ȧ

(
Q̄aα̇ȧ − S̄aα̇ȧ

)
. (2.24)

The bosonic symmetry is also enlarged compared to the generic curve on S3. In fact,

besides invariance under the group SU(2)B ⊂ SO(6) which rotates Φ4,Φ5,Φ6, there is an

extra U(1) symmetry generated by

1

2
(P4 −K4) , (2.25)

which follows from the fact that the loops satisfy x4 = 0. The presence of this extra

symmetry may be also understood from the algebra of the supercharges. In fact, one can

see that anticommuting charges of opposite chirality precisely produces the U(1) genera-

tor (2.25). In appendix B.1 we give a detailed derivation of the algebra generated by these

symmetries and prove that it is a SU(1|2) superalgebra. The even part of this superalge-

bra is U(1) × SU(2)B and the four fermionic generators transforming as 2+ + 2− under

the even symmetries can be obtained by defining appropriate linear combinations of the

supercharges (2.24).

A generic smooth curve on S2 exhibits a curious property, whose precise significance

would be interesting to explore in more depth: The gauge coupling for that curve is given,

using vector notation in R
3, by ~̇x while from (2.19) the scalar coupling is the cross-product

~x × ~̇x. If we take |~̇x| = 1, then ~x × ~̇x is also a vector on S2 and we can consider Wilson

loops along that path in space-time. The corresponding scalar coupling will be
(
~x× ~̇x

)
×
(
~x× ~̈x

)
= −~x

(
~̇x · ~x× ~̈x

)
∝ ~x . (2.26)
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The proportionality constant ~x × ~̈x is non-zero if the curve is nowhere a geodesic (i.e. it

is never part of a great circle). We see then that for any smooth, nowhere geodesic curve

on S2 there is a dual curve with gauge and scalar coupling interchanged.4 In section 3.4

we comment on the extension of this map to the dual AdS5 × S5. Only on the boundary

is it a map between AdS5 and S5, otherwise it mixes the coordinates in a somewhat more

complicated way (see (3.68) and the discussion after it).

In the following subsections we discuss some examples of special loops inside S2 pre-

serving some extra supersymmetries. The case of the general loops belonging to this class

is presented in great detail in section 4, where we provide evidence that they are related

to Wilson loops in two-dimensional Yang-Mills theory.

2.3.1 Latitude

Taking the loop to be at the equator of the S2 will clearly give the 1/2 BPS circle described

in section 2.1. More generally we can take the loop to be a non-maximal circle, i.e. a latitude

of the S2. Concretely, we can parameterize the loop as

xµ = (sin θ0 cos t , sin θ0 sin t , cos θ0, 0) . (2.27)

Computing the scalar couplings for this curve according to (2.19)

1

2
σRi = εijkx

j dxk = sin θ0(− cos θ0 cos t ,− cos θ0 sin t , sin θ0) dt , (2.28)

one can see that they also describe a latitude on the S2 ⊂ S5 associated to Φ1, Φ2, Φ3, but

the circle sits at π/2 − θ0, see figure 1. In particular, when the loop is a maximal circle,

θ0 = π/2, the curve in scalar space reduces to a point (the north pole) and one falls back

to the 1/2 BPS circle described in section 2.1.

This family of loops is essentially the same as the operators considered in [24]: The

operator we describe here and the one in [24] are simply related by a conformal transfor-

mation (a dilatation and a translation along x3) which moves the circle from the equator

to a parallel.5

As can be seen from (2.28), such an operator couples to three scalars, but it can

be shown that the supersymmetry equations will give only two independent constraints.

Indeed, one can see that the supersymmetry variation vanishes at every point along the

loop provided that the following two conditions are satisfied

cos θ0
(
γ12 + ρ12

)
ǫ1 = 0, (2.29)

ρ3γ5ǫ0 =
[
iγ12 + γ3ρ

2γ5 cos θ0(γ23 + ρ23)
]
ǫ1 . (2.30)

If cos θ0 6= 0, one has two independent constraints and the loop preserves 1/4 of the

supersymmetries. In the special case cos θ0 = 0 the first constraint disappears and one

recovers the 1/2 BPS maximal circle condition (2.3).

4It is possible to extend this to curves with sections that are geodesic, in the dual loops they will manifest

themselves as cusps (and vice-versa).
5Also compared to [24] θ0 is replaced here by π/2 − θ0.
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θ π/2 − θ

a. b.

0 0

Figure 1: Quarter-BPS Wilson loop along a latitude. In a. we show the Wilson loop along a

latitude at angle θ0 on an S2 ⊂ R4. b. depicts the scalar couplings which follow a dual latitude on

S2 ⊂ S5. Notice that if we took b. to be the path of the loop in space, then a. would describe the

associated scalar couplings. This is an explicit example of the duality between scalar and gauge

field couplings discussed in the text.

One may solve the constraints (2.30) as described in section 1.2 by viewing γi and ρi
as Pauli matrices acting on Lorentz and SU(2)A indices respectively. In particular, the first

line in (2.30) may be written as

(−iγ12 + τA3 )ǫ1 = 0. (2.31)

For a generic loop we had three such equations (for the anti-chiral spinor), which meant

that the only solution had to be a singlet of the diagonal SU(2)R + SU(2)A group. Here

we find only one such equation for each of the chiralities, such that a U(1) charge (τ total
3 )

has to vanish. So in addition to the singlet, this constraint allows one of the states of the

triplet. Explicitly, we can write the two solutions of (2.31) as

ǫ
(1)
1, a = ǫ2

1, 1̇ a
− ǫ1

1, 2̇ a
= (iτ2)

ȧ
α ǫ

α
1, ȧ a

ǫ
(2)
1, a = ǫ1

1, 2̇ a
+ ǫ2

1, 1̇ a
= (τ1)

ȧ
α ǫ

α
1, ȧa ,

(2.32)

and similarly for the other chirality. The ǫ0 spinors can be obtained by solving the second

line of the constraints. For the singlet spinor ǫ
(1)
1 , the term proportional to cos θ0 does

not contribute and the solution is the same as the one for the great S2 loops given in

equation (2.24), that is

Qa
(1) = (iτ2)

α
ȧ

(
Qȧaα + Sȧaα

)
, Q̄a

(1) = εα̇ȧ
(
Q̄aα̇ȧ − S̄aα̇ȧ

)
. (2.33)

As for the solutions corresponding to ǫ1,(2), because of the γ3 in the term proportional to

cos θ0, the second constraint in (2.30) will relate ǫ0 of a given chirality to a combination of

ǫ1’s of both chiralities. Explicitly one can write the resulting conserved supercharges as

Qa
(2) =

1

sin θ0
(τ3ε)

α̇ȧ
(
Q̄aα̇ȧ − S̄aα̇ȧ

)
+ cot θ0 (iτ2)

α
ȧ

(
Qȧaα − Sȧaα

)
,

Q′ a
(2) =

1

sin θ0
(τ1)

α
ȧ

(
Qȧaα + Sȧaα

)
+ cot θ0 ε

α̇ȧ
(
Q̄aα̇ȧ + S̄aα̇ȧ

)
.

(2.34)
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The bosonic symmetries preserved by this loop turn out to be SU(2) × U(1) × SU(2)B .

Besides the obvious SU(2)B symmetry, the other SU(2) is essentially equivalent to the SU(2)

preserved by the maximal circle (2.5), except that one should conjugate those generators

by a dilatation and a translation along x3 which will move the circle from the equator

to a latitude. The resulting generators are similar to (2.5), but they are θ0 dependent

and now involve also the dilatation generator D. The explicit expressions are given in

appendix B.2, where we present the detailed calculation of the superalgebra associated to

this Wilson loop. The remaining U(1) symmetry mixes Lorentz and R-symmetry and is

given by the combination J12 + JA12, where JA12 is the generator of SU(2)A rotating Φ1 and

Φ2. This follows from the fact that the loop coordinates xi and the scalar couplings (1.5)

satisfy the equation x2σR1 − x1σR2 = 0. In B.2 we show that the eight supercharges and

these bosonic generators can be organized to form a SU(2|2) superalgebra.

This example is particularly interesting because it turns out that in perturbation theory

the combined gauge-scalar propagator is also constant, and it is equal to the one for 1/2

BPS circle with the simple rescaling g2
YM → g2

YM sin2 θ0 [24]. This led to the conjecture that

this 1/4 BPS Wilson loop is also captured by the matrix model (2.8) with a rescaling of the

coupling constant. The AdS string solution dual to this operator is explicitly known, as

reviewed in appendix C.1, and its classical action perfectly agrees with the strong coupling

limit of the matrix model result. An explicit D3 solution describing the Wilson loop in a

large symmetric representation was also found in [13], where it was shown again agreement

with the matrix model, including all 1/N corrections at large λ. More details on these

results and the implications for the conjectured relation of the S2 loops to 2d Yang-Mills

are discussed in section 4.

2.3.2 Two longitudes

A further example of a family of 1/4 BPS Wilson loops that are also a special case of

loops on a great S2 can be obtained as follows. Consider a loop made of two arcs of

length π connected at an arbitrary angle δ, i.e. two longitudes on the two-sphere. We can

parameterize the loop in the following way

xµ = (sin t, 0, cos t, 0) , 0 ≤ t ≤ π ,

xµ = (− cos δ sin t, − sin δ sin t, cos t, 0) , π ≤ t ≤ 2π .
(2.35)

The corresponding Wilson loop operator will couple to Φ2 along the first arc and to

−Φ2 cos δ + Φ1 sin δ along the second one, see figure 2. Notice that such an operator is

related by a stereographic projection to a Wilson loop of the type invariant under Q [34]

given by two semi-infinite rays on the plane with an opening angle δ. Using this observation

we were able to construct the explicit dual string solution for this Wilson loop, which is

presented in appendix C.2.

It is straightforward to study the supersymmetry variation of this operator. Each arc,

being (half) a maximal circle, is 1/2 BPS and will produce a single constraint

First arc: ρ2γ5ǫ0 = iγ31ǫ1 ,

Second arc: (ρ2γ5 cos δ − ρ1γ5 sin δ)ǫ0 = i(γ31 cos δ − γ23 sin δ)ǫ1 .
(2.36)
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δ

π − δ

b.a.

Figure 2: Quarter-BPS Wilson loop made of two longitudes. In a. we show the loop on S2 ⊂ R4

obtained by taking two half circles, or longitudes, with opening angle δ. The corresponding scalar

couplings in b. turn out to be two points on the equator of S2 ⊂ S5 separated by an angle π − δ.

Combining the two equations, we see that the system has to satisfy, as long as sin δ 6= 0,

ρ2γ5ǫ0 = iγ31ǫ1 , ρ1γ5ǫ0 = iγ23ǫ1 . (2.37)

These constraints are of course consistent and therefore the loop will preserve 1/4 of the

supersymmetries. When sin δ = 0, the second equation in (2.37) disappears and the loop

becomes 1/2 BPS (in the case δ = π, it is just the maximal circle discussed above, while in

the case δ = 0, the loop is made of two coincident half circles with opposite orientations).

No further supersymmetries will be broken when one adds more circles or half-circles that

all intersect at the north and south poles.

To solve the above constraints, we can proceed as usual by first eliminating ǫ0. This

gives the equation

(−iγ12 + τA3 )ǫ1 = 0 , (2.38)

which is the same equation encountered for the latitude discussed in the previous subsec-

tion. The two solutions for positive chirality are given in (2.32) and similarly one can get

the negative chirality ones. From the equation ρ2γ5ǫ0 = iγ31ǫ1 one can then get the two

solutions for ǫ0 as

ǫ0,(1) = γ5ǫ1,(1) , ǫ0,(2) = −γ5ǫ1,(2) . (2.39)

Thus the eight supercharges which annihilate the Wilson loop made of two longitudes are

Qa
(1) = (iτ2)

α
ȧ

(
Qȧaα + Sȧaα

)
, Qa

(2) = (τ1)
α
ȧ

(
Qȧaα − Sȧaα

)
,

Q̄a
(1) = εα̇ȧ

(
Q̄aα̇ȧ − S̄aα̇ȧ

)
, Q̄a

(2) = (τ3ε)
α̇ȧ
(
Q̄aα̇ȧ + S̄aα̇ȧ

)
.

(2.40)

The loop also preserves the bosonic symmetry group U(1) × U(1) × SO(4). The SO(4) ⊂
SO(6) factor simply comes from the fact the this loop only couples to Φ1 and Φ2 so that we

are free to rotate Φ3,Φ4,Φ5,Φ6. To understand the U(1)2 symmetry, one can look at what

are the compatible symmetries of two circles in the (1, 3) and (2, 3) planes. Recalling our

discussion of the great circle, one can see that there are two shared symmetry generators,

namely 1
2(P4 − K4) and 1

2 (P3 + K3). These two generators commute and give a U(1)2
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symmetry.6 These bosonic symmetries, together with the eight supercharges (2.40), form

the direct product superalgebra SU(1|2) × SU(1|2), as we show in appendix B.3.

2.4 Hopf base

Consider a curve parameterized by the Euler angles θ and φ, which form the base of the

Hopf fibration (2.9). A family of loops with enhanced supersymmetry can be obtained if

along the fibers we choose

ψ(t) = −
∫ t

0
dt′ φ̇(t′) cos θ(t′) , (2.41)

which guarantees that the pull-back of σR3 along the loop vanishes, see (2.11), so the

operator will only couple to Φ1 and Φ2. A generic curve of this form will break all the

chiral supersymmetries, and for the anti-chiral ones will introduce the constraints

ρ2ǫ−0 = τR2 ǫ
−
1 , ρ1ǫ−0 = τR1 ǫ

−
1 . (2.42)

This is the anti-chiral part of equation (2.37), and consequently the loop will preserve the

anti-chiral supersymmetries in (2.40)

Q̄a
(1) = εα̇ȧ

(
Q̄aα̇ȧ − S̄aα̇ȧ

)
, Q̄a

(2) = (τ3ε)
α̇ȧ
(
Q̄aα̇ȧ + S̄aα̇ȧ

)
. (2.43)

Therefore such operators are 1/8 BPS.

The example of the two longitudes is a special case of these loops where the entire

loop is contained within an S2, so in addition to the four anti-chiral supercharges (2.43),

it also preserves four chiral supercharges. To relate them explicitly, note that among the

Euler angles only θ varies along the two arcs of (2.35) while φ and ψ are kept fixed with

ψ + φ = π, ψ + φ = 3π or ψ + φ = 5π.

The equation for ψ (2.41) leads to an integral condition, namely that the loop is closed.

It can actually be restated in a nice way as a condition on the area bound by the loop on

the base ∫
dφ dθ sin θ =

∫ 2π

0
dt φ̇(t) (1 − cos θ(t)) = φ(2π) + ψ(2π) . (2.44)

Since ψ has period 4π and so does ψ+φ, we deduce from this equation that the area bound

by the curve should be quantized in units on 4π.

The bosonic symmetry preserved by such a loop is just the SO(4) rotating Φ3, Φ4, Φ5

and Φ6. The superalgebra will be the same as the one of the Wilson loop made of two

longitudes, but restricted to the antichiral sector. Defining linear combinations as in (B.15),

one obtains the same algebra given in (B.16), the only difference being the we should use

the negative chirality. It is easy to see that this is an OSp(1|2) × OSp(1|2) superalgebra.

Notice that a diagonal subgroup of this algebra is just the OSp(1|2) preserved by all our

loops.

6Throughout we studied the symmetries only at the level of the algebra, so we are not distinguishing

between U(1) and R.
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2.4.1 Latitude on the base

As mentioned before, the longitudes discussion in section 2.3.2 are also special examples of

loops on the Hopf base.

Beyond this example we found one simple family of loops in this class to which we

have explicit string solutions. They are given by taking a latitude curve on the Hopf base

φ = kt , θ = θ0 , 0 ≤ t ≤ 2π , (2.45)

where in general we have allowed a multiply wrapped latitude with winding k. From

equation (2.41) it follows that ψ is also linear in t

ψ = −kt cos θ0 . (2.46)

The periodicity of ψ implies that k cos θ0 should be an integer such that the area above the

loop on the base is a multiple of 4π.

Let us take k = k1 + k2 and k cos θ0 = k1 − k2. Then in terms of the Cartesian

coordinates (2.10) this curve is

x1 =

√
k2

k
sin k1t , x2 =

√
k2

k
cos k1t , x3 =

√
k1

k
sin k2t , x4 =

√
k1

k
cos k2t . (2.47)

This is a motion on a torus inside S3 where the curve wraps the two cycles k1 and k2 times.

In general (see section 2.5 and appendix C.3) one could take any torus inside S3, but the

extra conditions for loops on the Hopf base require the ratio of the lengths of the cycles to

be
√
k2/k1. If k1 = k2 this is a (multiply wrapped) circle.

The scalar couplings for these loops turn out to be quite simple,

1

2
σR1 =

√
k1k2 cos(k2 − k1)t dt ,

1

2
σR2 =

√
k1k2 sin(k2 − k1)t dt , (2.48)

so we just have a periodic motion, as in the case of the latitude on the great S2 in sec-

tion 2.3.2 (and taking the limit when the curve approaches the north-pole).

Since the path of this loop in R
4 is periodic, the dual string solution describing it

can be found by using the techniques of [59]. The detailed calculation is presented in

appendix C.3, where the action of the surface in AdS5 × S5 describing a generic toroidal

loop is computed. For the application to the latitude discussed in this section, we can use

all the expressions from the general case of C.3 with the replacement

sin
θ0
2

=

√
k2

k
, cos

θ0
2

=

√
k1

k
. (2.49)

Going over the calculation one sees that many of the expressions simplify and the final

result for the action (C.64), where without loss of generality we have chosen k1 ≤ k2, is

S = −
(
2k1 −

√
k1k2

)√
λ . (2.50)

It would be very interesting to see if the expectation value of the loop could possibly

be computed exactly in gauge theory and compared at strong coupling with this string

calculation.
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2.5 More toroidal loops

As mentioned in the last subsection, the tools used for calculating the loops associated with

latitudes on the Hopf base can immediately be applied to general doubly-periodic loops on

any torus in S3.

We take the curve to be of the form

x1 = sin
θ

2
sin k1t , x2 = sin

θ

2
cos k1t ,

x3 = cos
θ

2
sin k2t , x4 = cos

θ

2
cos k2t .

(2.51)

The scalar couplings for these loops are also simple,

1

2
σR1 =

k1 + k2

2
sin θ cos(k2 − k1)t dt ,

1

2
σR2 =

k1 + k2

2
sin θ sin(k2 − k1)t dt ,

1

2
σR3 =

(
k2 cos2 θ

2
− k1 sin2 θ

2

)
dt .

(2.52)

Those expressions are similar to the ones for the latitude on S2 in section 2.3.1. The string

solution dual to these loops is presented in appendix C.3.

Let us just comment that these loops are a natural generalization of the latitudes on

the Hopf base, in the same way that the 1/4 BPS latitude generalized the Q-invariant loops

of [34]. Here too, compared with (2.48) there is an extra constant coupling to the third

scalar Φ3.

It is tempting to guess that these loops arise by considering other S2 spaces inside S3,

where the equation for ψ (2.41) is modified by the constant µ to

ψ̇ = −µ cos θ φ̇ , (2.53)

Such a construction would in turn lead to these general toroidal loops with

sin
θ

2
=

√
k2(1 + µ) − k1(1 − µ)

2kµ
. (2.54)

While it is clear that those loops, like all the others we constructed, preserve 2 super-

charges, we have not substantiated whether they preserve some extra supersymmetries. If

so, it would be interesting to identify the general curve with those supersymmetries, since

those curves might give interpolating families between the Hopf base and the great S2.

As an indication that this might work, note that for k2(1 − µ) − k1(1 + µ) = 0 this is

again the great circle and when k2 = 0, we end up with the latitude on the maximal S2 of

section 2.3.1.

2.6 Infinitesimal loops

We conclude our list of examples by showing that in a particular flat limit we can recover

from our construction a subclass of the loops of [34]. If a loop is concentrated entirely
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near one point, say x4 = 1, one will not see the curvature of the sphere anymore. More

precisely, we can take a limit in which we send the radius of S3 to infinity while keeping

the size of the loop fixed, so that we end up with a curve on flat R
3. In this limit the left

and right forms will then become exact differentials

σR,Li ∼ 2 dxi , i = 1, 2, 3 , (2.55)

so the Wilson loop (1.7) will reduce to

W =
1

N
Tr P exp

∮
dxi
(
iAi + Φi

)
. (2.56)

This is indeed a subclass of the Q-invariant loops constructed by Zarembo in [34] where the

curve is restricted to be on R
3. Studying the supersymmetry variation of such operator one

can see that generically it will only preserve two combinations of Poincaré supersymmetries

defined by the constraints

(
γi − iρiγ5

)
ǫ0 = 0 , i = 1, 2, 3 . (2.57)

If the curve is restricted further to lie only in a 2-plane or a line near x4 = 1, the super-

symmetry will be further enhanced. For certain shapes, like a straight line or a circle on

the plane, also combinations of superconformal supersymmetries may be preserved.

This should explain why in this case the expectation value of these loops is trivial. The

planar loops come from infinitesimal ones on S3, so it is quite natural that their expectation

values is unity. This might also explain why the construction of the D3-brane solution dual

to the Wilson loop in this limit was singular [13].

3. Wilson loops as pseudoholomorphic surfaces

After going over the construction of the supersymmetric Wilson loops and presenting many

examples, expanding on [35], in this part of the paper we will present completely new results

on the general string solutions dual to those Wilson loops. Their underlying geometry will

turn out to be surprisingly simple and associated to the existence of an almost complex

structure, which we will call J , on the subspace of AdS5 ×S5 in which the string solutions

dual to the loops live. As we shall show, the string surfaces satisfy the “pseudo-holomorphic

equations” associated to this almost complex structure which are a simple generalization of

the usual Cauchy-Riemann equations one encounters in complex geometry. An analogous

picture for the class of Q-invariant Wilson loops was proposed in [52]. As already mentioned

in the field theory discussion, see section 2.6, these latter loops are trivial in the sense that

their expectation value is expected to be identically one. On the other hand we know that

the expectation value of the loops constructed in this paper is non-trivial. We will show

that the loop expectation value receives a nice geometrical interpretation in terms of the

integral on the string world-sheet of the fundamental two-form associated to J .

For the reasons just mentioned it will be useful to begin this section by reviewing

the concept of a pseudo-holomorphic surface.7 Let Σ be a two-dimensional surface with

7For a comprehensive discussion see [60].
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complex structure8 αβ, (α, β = 1, 2), embedded in a spaceM with almost complex structure

JM
N . This surface is said to be pseudo-holomorphic if it satisfies

VM
α ≡ ∂αX

M − κJM
N  βα ∂βX

N = 0 . (3.1)

The possible choices κ = ±1 correspond to (pseudo)holomorphic and anti-holomorphic

embeddings. In our discussion we will assume κ = 1. These equations are a natural

generalization of the Cauchy-Riemann equations on the complex plane, to which they

reduce when we identify Σ and M with R
2 and use the standard complex structure

 = J =

(
0 −1

1 0

)
. (3.2)

The solutions of the pseudo-holomorphic equations (3.1) are surfaces calibrated by J .

Indeed if we introduce the positive definite quantity

P =
1

4

∫

Σ

√
g gαβGMNV

M
α V N

β (3.3)

and expand P we obtain

P = A(Σ) −
∫

Σ
J ≥ 0 (3.4)

where A(Σ) is the area of the surface Σ and J denotes the pull-back of the fundamental

two-form

J =
1

2
JMN dX

M ∧ dXN . (3.5)

For a pseudo-holomorphic surface P = 0, and one concludes that

A(Σ) =

∫

Σ
J . (3.6)

Note that if J is closed, its integral is the same for all surfaces in the same (relative)

homology class and then the bound in (3.4) applies to them all. Therefore a string surface

calibrated by a closed two-form is necessarily a minimal surfaces in its homology class.

In our context the ambient space will be a subspace of AdS5 × S5 and Σ will be

the string world-sheet on which the complex structure can be expressed in terms of the

world-sheet metric gαβ and the flat epsilon symbol εαδ (see (A.3)) as

αβ =
1√
g
εαδgδβ . (3.7)

The AdS dual description of the Q-invariant loops was found in [52]. The loops are

constructed by associating to every tangent vector in R
4 one of the scalars, in a way

related to the topological twisting of an SO(4) subgroup of the R-symmetry group and the

Euclidean Lorentz group.

When thinking of a D3 in flat ten dimensional space this leads to a natural association

of the four coordinates parallel to the brane and four of the transverse directions. Taking

8An almost complex structure on a two-dimensional surface is always integrable [60].
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the near-horizon limit of the metric after accounting for the brane’s back-reaction leads to

AdS5 × S5 in the Poincaré patch with coordinates
(
xµ, ym, ui

)
with µ,m = 1, 2, 3, 4 and

i = 1, 2 and metric

ds2 =
(
y2 + u2

)
dxµdxµ +

1

y2 + u2

(
dymdym + duidui

)
, (3.8)

the corresponding string solutions live in the ui = const. subspace.

It is now natural to relate the coordinates xµ and ym with µ = m with the closed

2-form

J =
1

2
JMN dX

M ∧ dXN ≡ δµmdx
µ ∧ dym , (3.9)

as it is invariant under the twisted group. It is easy to see that JMN squares to minus the

identity and therefore it defines an almost complex structure on the relevant subspace of

AdS5 × S5. The string solutions dual to these loops turn out to be pseudo-holomorphic

surfaces with respect to this almost complex structure and satisfy

(y2 + u2)∂αxµ − αβ∂
βymδµm = 0 . (3.10)

Since the two-form J is closed, they are minimal calibrated surfaces with (divergent) world-

sheet area given by (3.6). Using the closure of the calibration two-form J it is immediate

to re-express the integral of J as a contour integral on the world-sheet boundary obtaining

A(Σ) =
1

ǫ

∫
dt|ẋ| , (3.11)

where the formally divergent integral has been regularized by computing it at z = ǫ. The

classical action Scl(Σ) is the finite part of the world-sheet area and therefore vanishes,

implying that the Wilson loops have trivial expectation value

〈W 〉 = e−
√
λScl(Σ)/2π = 1. (3.12)

Despite the existence of this beautiful structure, the only explicit solutions known are the

straight line and the 1/4 BPS circle, which is the limit of the latitude when θ0 → 0 (see

section 2.3.1). In appendix C.2 we construct another explicit solution for a loop in this

class. This loop is made of two rays in the plane at arbitrary opening angle and is related

to the longitudes example of section 2.3.2 by a stereographic projection (figure 4).

In the rest of this section we will see that it is possible to extend these ideas to the class

of supersymmetric Wilson loops presented in section 1. Those loops follow an arbitrary

path on S3 and couple to three scalars, parameterizing an S2. Therefore they will be

described by a string ending along a path in an S3 × S2 on the boundary of AdS5 × S5.

For a generic curve on R
4 or S4 the string may extend into all of AdS5, but when it is

restricted to R
3 or S3, it will remain inside an AdS4 subspace. Likewise we assume9 that

9For a curve coupling to two scalars and wrapping S1
⊂ S5 the solution will have to extend into S2

⊂ S5,

for topological reasons. This is indeed the case for the circular Q-invariant loop [34] and our assumption is

that a similar phenomenon does not occur with boundary data in S3
× S2.
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the string will remain inside the S2 ⊂ S5, so the full solution will reside inside an AdS4×S2

subspace which we label by X . This assumption will be later justified by proving that the

solutions to the pseudo-holomorphic equation in this subspace are extrema of the action.

The metric we employ is (µ = 1, . . . , 4, i = 1, 2, 3)

ds2 =
1

z2
dxµdxµ + z2dyidyi , z2 ≡ 1

yiyi
, (3.13)

subject to the constraint

x2 + z2 = 1, x2 ≡ xµxµ. (3.14)

We will see that the string solutions dual to the loops are pseudo-holomorphic with respect

to an almost complex structure J on X which we construct next. The fundamental two-

form associated to J will turn out to be not closed suggesting the interpretation of our

loops as “generalized calibrated submanifolds”. We will also argue that the non-closure of

J seems to be related to the fact that the loops have non-trivial expectation values.

3.1 Almost complex structure on AdS4 × S2

We want to motivate the construction of the almost complex structure relevant to the AdS

description of the generic loops on S3 by taking the supersymmetry conditions derived in

field theory as our starting point, see (1.11). They can be summarized as

γµν ǫ
−
1 = −iσiµν ρ̃i ǫ−0 , (3.15)

or equivalently as

γν ρ̃i ǫ
−
1 = −iσiµνγµ ǫ−0 , (3.16)

where (γµ, ρ̃i) denote seven of the 10-dimensional (flat) anti-commuting gamma matrices10

and σiµν denote the components of the left-invariant one-forms on S3 (1.6). We can also

express the algebra of the SU(2)A rotating the three scalars (and yi) as11

ρ̃ij ǫ
−
0 = −i εijkρ̃k ǫ−0 . (3.17)

The almost complex structure J in the dual string side is ultimately expected to

encode all these conditions. We can rewrite these relations in terms of curved-space gamma

matrices12 ΓM = (Γµ,Γi) = (z−1γµ, z ρ̃i) (remembering (1.17) that ǫ−0 = −ǫ−1 ) as

z ΓM µ ǫ
−
0 = −iJN

M ;µ ΓN ǫ
−
0

z ΓM i ǫ
−
0 = iJ N

M ; i ΓN ǫ
−
0 ,

(3.18)

with

J µ
ν; i = z2 σiµν , J ν

i;µ = −z4J i
ν;µ = z2 σiνµ, J i

j ; k = −z2 εijk , (3.19)

10To make them anti-commute they are related to the field-theory gamma matrices in (1.8) by ρ̃i = ρiγ
5.

11The extra minus sign is due to γ5.
12The indices M, N include all seven directions, but to avoid ambiguities we will never substitute their

values for them, only for µ, ν and i, j.
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and with all the other components of JN
M ;P vanishing. We can interpret (3.18) as a

multiplication table for the curved gamma matrices acting on ǫ0: The product of two

gamma matrices is re-expressed in terms of another gamma matrix J N
M ;PΓN . In fact, this

multiplication table up to factors of z is basically the octonion multiplication table, which

can be regarded as a higher dimensional generalization of the usual cross-product in R
3.

We present it in appendix D and review how it can be used to define an almost complex

structure on the round 6-sphere. In analogy to (D.10) it is then natural to introduce the

following matrix

JM
N = JM

N ;P X
P , (3.20)

where M and N denote row and column indices respectively. From (3.19) and (3.20) we

can read the various components of

J =

(
J µ
ν J µ

j

J i
ν J i

j

)
, (3.21)

to be

J µ
ν = z2 σiµν y

i, J ν
i = −z4J i

ν = z2 σiνµ x
µ, J i

j = −z2εijk y
k . (3.22)

Explicitly

J =




z2




0 y3 −y2 −y1

−y3 0 y1 −y2

y2 −y1 0 −y3

y1 y2 y3 0


 z2




−x4 −x3 x2

x3 −x4 −x1

−x2 x1 −x4

x1 x2 x3




z−2




x4 −x3 x2 −x1

x3 x4 −x1 −x2

−x2 x1 x4 −x3


 z2




0 −y3 y2

y3 0 −y1

−y2 y1 0







. (3.23)

To show that J defines an almost complex structure on X = AdS4 × S2, note that a

generic tangent vector pM = (p1, p2, p3, p4, q1, q2, q3) in TX satisfies the condition

xµpµ − z4yiqi = 0 , (3.24)

which comes from differentiating the constraint x2 + z2 = 1. Then it is easy to see that

J N
Mp

M is still a tangent vector so that J is a well defined map on the tangent space TX .

Furthermore if we consider the action of J 2 we obtain an expression very similar to what

one gets for S2 (see (D.4) in appendix D) and with the aid of (3.24) one finds that

J 2(p) = −p . (3.25)

Therefore J defines an almost complex structure on X = AdS4 × S2.

As in the case of the almost complex structure for the strings dual to the Q-invariant

loops (3.9), our almost complex structure J reflects the topological twisting associated

to our loops. As discussed in section 1.3, this twisting reduces the product of the groups
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SU(2)R and SU(2)A to their diagonal subgroup SU(2)R′ which is then regarded as part of

the Lorentz group. This can be seen directly from our construction as J µ
ν is given by the

contraction of the components of the one-forms σRi with the yi coordinates on which the

SU(2)A group acts. Similar remarks can be made for the J i
ν sub-block. At a more formal

level the twisting manifests itself through the condition

(
J µν

; iΓµν − J jk
; iΓjk

)
ǫ−0 = 0 , (3.26)

which simply expresses the invariance of ǫ0 under the twisted SU(2)R′ action

(
σiµνγµν + εijkρ̃jk

)
ǫ−0 = 0 . (3.27)

Since this almost complex structure captures those properties of our Wilson loops, we

expect the string solutions describing the Wilson loops in AdS5×S5 to be compatible with

it, i.e. that the world-sheet is pseudo-holomorphic with respect to J . We do not have a

proof of this, but in the remainder of this section we will study such pseudo-holomorphic

surfaces and show that their properties match with the expected behavior of the string

duals.

In order to write the pseudo-holomorphic equations associated to J we introduce the

vector XM = (x1, x2, x3, x4, y1, y2, y3) in X and the equations are

JM
N∂αX

N −√
g εαβ∂

βXM = 0. (3.28)

For brevity in the following we will refer to the pseudo-holomorphic equations (3.28) as the

J -equations. As we will show, surfaces satisfying those equations are supersymmetric and

are classical solutions of the string action.

It is possible to repackage three of the J -equations in form notation as

⋆2dy
i =

1

2z2
σi +

z2

2
ηi , i = 1, 2, 3 . (3.29)

On the left-hand side we used the Hodge dual with respect to the world-sheet metric and

on the right-hand side we used the pull-backs to the world-sheet of the one-forms (we use

the same notations for the forms and their pull-backs)

σ1 = 2(x2 dx3 − x3 dx2 + x4 dx1 − x1 dx4) ,

σ2 = 2(x3 dx1 − x1 dx3 + x4 dx2 − x2 dx4) ,

σ3 = 2(x1 dx2 − x2 dx1 + x4 dx3 − x3 dx4) ,

(3.30)

which are defined in the same way as the right-forms on S3 (1.5) but we extend the definition

to arbitrary radius. The other forms are the pull-backs of the SU(2)A currents

η1 = 2(y2 dy3 − y3 dy2) ,

η2 = 2(y3 dy1 − y1 dy3) ,

η3 = 2(y1 dy2 − y2 dy1) .

(3.31)
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We will try to show that the J equations are satisfied by the strings dual to the

supersymmetric loops on S3. As a first support for this claim consider the asymptotic

form of the surface near the boundary of AdS5. As we approach the boundary, taking z

to zero, xµ as well as yi/y approach constants, given by the boundary conditions. In the

conformal gauge we denote the two world-sheet directions as n and t, normal and tangent

to the boundary respectively. It can be shown in general [61] that |∂nz| = |∂tx|. In our

case we can take (3.29) which in the z → 0 limit reduces to

∂ny
i ≃ 1

2z2
σiµνx

µ∂tx
ν . (3.32)

Given that yi scale as z−1 we get

z yi ≃
σiµνx

µ∂tx
ν

|∂tx|
. (3.33)

The left-hand side represents the boundary conditions on the S2, which exactly match the

scalar couplings of the Wilson loop (1.7) captured by the right-hand side.

Another way to see this is by looking at (3.23), where in the z → 0 limit, as we

approach the AdS5, the lower-left sub-matrix J i
ν dominates. The entries in this sub-block

are the components of the forms σRi which define the coupling of the scalars Φi to the

Wilson loop operator in the field theory. Therefore we can view J as the natural bulk

extension of those couplings.

Lowering the indices of the almost complex structure we obtain an antisymmetric

tensor JMN . We can therefore introduce the following fundamental two-form13

J =
1

2
JMN dX

M ∧ dXN =
1

4
yi
(
dσi − z4dηi

)
− 1

2
σi ∧ dyi. (3.34)

where the one-form σi and ηi were defined in (3.30) and (3.31). Later in section 3.3 we

will discuss our string as surfaces calibrated by J . For now we limit ourselves to observe

that this is not a standard calibration as J is not closed

dJ = −1

4
dyi ∧ dσi + z4 dy1 ∧ dy2 ∧ dy3. (3.35)

Written out explicitly dJ reads14

−dy1dx23 − dy1dx41 − dy2dx31 − dy2dx42 − dy3dx12 − dy3dx43 + z4dy123 , (3.36)

which is remarkably similar to the expression of associative three form preserved by the

exceptional group G2, see (D.12).

The non-closure of J for a calibrated string is unusual and raises the issue of whether

the solutions of the J -equations are automatically solutions of the σ-model. To prove that

13For symbol economy we will use the same symbol J to denote both the almost complex structure and

the associated fundamental two-form. It will always be clear from the context what J refers to.
14For brevity in what follows we omit the ∧ symbol and use the notation dxµν = dxµ ∧ dxν and dy123 =

dy1 ∧ dy2 ∧ dy3.
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this is indeed the case, we consider the equations of motion for the σ-model in AdS5 × S2

(the equations of motion for the extra three coordinates in S5 are automatically satisfied

by setting them to constants)

∇α

(
GMN∂

αXN
)

= ∂α
(
GMN∂

αXN
)
− 1

2
∂MGPN∂αX

P∂αXN = 0 (3.37)

with metric GMN as in (3.13) and ∇α denoting the pull-back of the covariant derivative

with respect to GMN . We now show that the equations of motion for the xµ and yi

coordinates are satisfied once we assume that the string lives in the AdS4 × S2 subspace

and is a solution of the J equations. Using the J -equations we can write the equations of

motion for xµ and yi as

ǫαβ∂αX
P∂βX

N

(
∂PJMN − 1

2
∂MGQP JQ

N

)
= 0 . (3.38)

When M = µ the second term in (3.38) does not contribute and it is very easy to see that

this condition is indeed satisfied. For M = i, on the other hand, the left hand side of (3.38)

becomes after switching to form notation

1

2

(
dσi − z4dηi

) (
δik − z2yiyk

)
. (3.39)

This expression vanishes since, by using the J equations and the orthogonality condition

xµdxµ − z4yidyi = 0, one can show after some algebra that

dσi − z4dηi = z4yiGMN∂αX
M∂αXN d2σ . (3.40)

3.2 Supersymmetry

A good check that the solutions of the J -equations describe our Wilson loops comes from

studying the supersymmetries preserved by those strings. In this subsection we will prove

that strings satisfying those equations are indeed supersymmetric and are invariant under

precisely the same supercharges which annihilate the dual operator on the field theory side.

The κ-symmetry condition for a fundamental string is

(√
g εαβ∂αX

M∂βX
NΓMN − iGMN∂αX

M∂αXN
)
ǫAdS = 0 , (3.41)

where ǫAdS is the AdS5×S5 Killing spinor. The most convenient form for the Killing spinor

is [62]

ǫAdS =
1√
z

(
ǫ0 + z

(
xµΓµ − yiΓi

)
ǫ1
)
, (3.42)

where ǫ0 and ǫ1 are constant 16 component Majorana-Weyl spinors. In fact they are the

exact analogues of the spinors representing the Poincaré and conformal supersymmetries

in the dual N = 4 theory (1.9), as can be seen by going to the AdS boundary where ǫAdS

reduces to

ǫAdS ∼
z→0

1√
z

(ǫ0 + xµγµ ǫ1) . (3.43)
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To prove (3.41) we first use the J -equations and rewrite the term multiplying ǫAdS as

∂αX
M∂αXN

(
J P

NΓMΓP − iGMN

)
= ∂αXPΓP ∂αX

M
(
JN

MΓN − iΓM
)
. (3.44)

It will therefore be enough to prove

∂αX
M
(
JN

MΓN − iΓM
)
ǫAdS = 0 . (3.45)

This equation should be satisfied by the same supersymmetry parameters as in the gauge-

theory calculation in section 1.2. They were all collected in (3.18) in terms of the compo-

nents of J . Using first that ǫ0 = −ǫ1, the left-hand side of (3.45) becomes (switching to

form notation)

i dXM
(
−iXPJ N

M ;PΓN ǫ0 + z
(
xµΓMµ − yiΓM i

)
ǫ0
)

− i dXM
(
ΓM ǫ0 − izXPJ N

M ;PΓN
(
xµΓµ − yiΓi

)
ǫ0
)
.

(3.46)

The terms in the first line vanish once we impose on ǫ0 and ǫ1 the conditions in (3.18).

Using that x2 + z2 = 1 and that xµdxµ − z4yidyi = 0 allows to prove that also the terms

in the second line vanish.

Beyond allowing us to prove κ-symmetry, equation (3.45) is quite interesting in its own

right. First multiplying it by15 ∂z̄X
NΓN gives

∂z̄X
M∂z̄X

M ǫAdS , (3.47)

which holds because of the Virasoro constraint. Multiplying by ∂zX
NΓN leads to

−i∂zXM∂z̄X
N (ΓMN +GMN ) ǫAdS = 0 , (3.48)

which is the κ symmetry condition rewritten in the z, z̄ basis. We also observe that, by

using the pseudo-holomorphic equations, one can recast the condition (3.45) simply as

∂z̄X
MΓM ǫAdS = Γz̄ ǫAdS = 0 , (3.49)

where Γz̄ is the pull-back to the world-sheet of the gamma matrices.

3.3 Wilson loops and generalized calibrations

In this section we will discuss the string dual to our Wilson loops from the point of view

of calibrated submanifolds. More precisely we will argue that the natural geometrical

description of the corresponding string solutions is in the context of “generalized calibra-

tions” [63 – 65].16 The main result is that the classical action of the strings (and hence

the expectation value of the loops) is given by the integral on the world-sheet of the fun-

damental two-form J . This is because, as discussed in the introduction of section 3, the

world-sheet area of a pseudo-holomorphic surface Σ can be computed by integrating the

pull-back of the fundamental two-form J (3.34),

A(Σ) =

∫

Σ
J . (3.50)

15∂z̄ ≡ ∂σ − i∂τ , ∂z ≡ ∂σ + i∂τ .
16See also [66] for a general discussion on calibrations.
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This equation suggests that our loops can be viewed as two-dimensional calibrated sub-

manifolds with the two-form J as calibration. As already observed this is not a standard

calibration though as the fundamental two-form J is not closed, see (3.35).

Without worrying about this issue for now, note that it is possible to rewrite the

two-form J as a sum of two contributions

J = J0 + dΩ (3.51)

with

J0 = −1

4
yi
(
dσi + z4dηi

)
, Ω =

1

2
yiσi. (3.52)

Using Stokes theorem the world-sheet area is then

A(Σ) =

∫

Σ
J0 +

∫

∂Σ
Ω . (3.53)

This expression is generically divergent and requires regularization. It can be seen by

studying the asymptotics near the boundary z ∼ 0 (see the discussion around (3.32)) that

the contribution of J0 is finite.

The integral of Ω is therefore divergent, but this is exactly the divergence that needs

to be subtracted from the area. To see that we again use the manipulations as in (3.32) to

rewrite it as ∫

∂Σ
Ω =

1

2

∫

∂Σ
dt yiσiµνx

µ∂ηx
ν = −1

2

∫

∂Σ
dt

√
g z2∂nyi . (3.54)

Here dt is the line element tangent to the boundary and ∂n the normal derivative. The last

expression is an integral over the momentum Pyi conjugate to the coordinates yi, which in

turn can be related to Pz, the momentum conjugate to z. Therefore we can rewrite

∫

∂Σ
Ω = −

∫

∂Σ
dt yiPyi =

∫

∂Σ
dt z Pz . (3.55)

The rigorous procedure to get a finite answer for the Wilson loops is by a Legendre trans-

form over the radial coordinate z [61]. It will therefore precisely cancel the entire contri-

bution of Ω.

The AdS/CFT prediction for the expectation value of the Wilson loop in the strong

coupling regime is then

exp

(
−
√
λ

2π

∫

Σ
J0

)
. (3.56)

We can go further and derive a simpler expression for J0. Applying the d operator on

equation (3.29) yields

1

2

(
dσi + z4dηi

)
+

1

2
dz4ηi − d(z2 ⋆2 dy

i) = 0 . (3.57)

Taking the inner product of this equation with yi we derive the following relation for J0

J0 = −1

2
yi · d(z2 ⋆2 dy

i). (3.58)
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By writing yi = θi/z with θiθi = 1, J0 can be proven to be equal to

−1

2

√
g

(
θi · ∇2θi − ∇2z

z

)
d2σ (3.59)

where ∇2 is the world-sheet Laplacian. The regularized area can therefore be written in a

rather simple form as

∫

Σ
J0 =

1

2

∫

Σ
d2σ

√
g

(
∂αθ

i ∂αθi +
∇2z

z

)
, (3.60)

or equivalently
1

2

∫

Σ
d2σ

√
g

(
∂αθ

i ∂αθi +
1

z2
∂αz ∂

αz + ∇2 log z

)
. (3.61)

The last term can also be rewritten as a boundary term

1

2

∫

Σ
d2σ

√
g∇2 log z =

1

2

∫

∂Σ
dτ
∂σz

z
. (3.62)

Unfortunately we are not able to re-express also the first two terms in (3.61) as integrals

on the contour of the Wilson loops at the boundary. This is unfortunate, as it would have

allowed to compute the expectation value of the Wilson loop without the need of an explicit

string solution. We leave this issue to future investigations.

Before we end this subsection we turn back to the issue of the non-closure of J . As

already observed a surface calibrated with respect to a closed form is a minimal surface in

its homology class. Such a statement will not apply in our case and we should instead study

our string solutions within the framework of generalized calibrations. Those are defined

in complete analogy to calibrations, only without demanding closure of the form [63 –

65]. Given a k-form ψ which is not closed, a generalized calibrated submanifold is a

k-dimensional submanifold which is a minimum of the (energy) functional

E(M) = Vol(M) −
∫

M
ψ. (3.63)

Since we do not require closure of ψ, a minimum of E(M) is not necessarily a minimal-

volume manifold.

Generalized calibrations appear very naturally in the discussion of D-branes in curved

backgrounds. Their actions typically include a Wess-Zumino term in addition to the Dirac-

Born-Infeld term and therefore cannot be seen as volume-minimizing submanifolds. In

these cases the non-closure of ψ can be due to torsion or to the presence of background or

worldvolume fluxes. Equation (3.63) can be thought as a BPS condition for these branes.

The above discussion points to a connection between J being a generalized calibra-

tion and our loops having a non-trivial expectation value (in contrast to the Q-invariant

loops). This interpretation is suggested by (3.51)–(3.56), where we see that while the exact

piece reduces to a divergent boundary contribution canceled by a counter-term, the non

closed piece J0 gives a finite non-trivial expectation value. In comparing equations (3.53)

and (3.63) it is also tempting to consider
∫
dΩ as the analogue of the area functional Vol(M)
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and J0 as the analogue of ψ. It would be interesting to see if there is some realization of

J0 in terms of a pull-back of a flux to the world-sheet.

Another interesting feature of our loops is the existence of unstable solutions. It was

found in [24] and reviewed in appendix C.1 that there are two classical string solutions

describing the latitude loop, one is a minimum and the other not. This should be quite

general since our scalar couplings define a curve on S2 and therefore the string can wrap

the north or the south pole (or in principle also wrap the sphere multiple times). This

phenomenon might be related to the non-closure of J .

3.4 Loops on S2 and strings on AdS3 × S2

We now present an application of the general formalism so far discussed to the subclass

of supersymmetric Wilson loops on S2 which were constructed in section 2.3 and will be

studied further in section 4. Recall that in the field theory, after setting x4 = 0, the

couplings to the scalars Φi can be written in vector notations as (2.19)

1

2
~σR = ~x× d~x , (3.64)

An interesting way to think of (3.64) is as

1

2
σRi = J ijdx

j , (3.65)

where J is the almost complex structure of unit 2-sphere (D.3). This almost complex

structure appears then very naturally in the definition of these Wilson loops.

The dual string solutions in the bulk live in the subspace AdS3 × S2 ⊂ X gotten by

restricting to x4 = 0. This clearly implies that on the world-sheet also ∂αx
4 = 0, and one

of the pseudo-holomorphic equations (3.28) becomes

yi∂αx
i + xi∂αy

i = 0, i = 1, 2, 3 . (3.66)

This can be easily integrated to a constant

x1 y1 + x2 y2 + x3 y3 = C . (3.67)

Hence the strings are restricted to live inside a four-dimensional subspace of AdS3 × S2

given by this constraint.

The remaining equations in (3.28) can be repackaged in terms of the following almost

complex structure

J =




z2




0 y3 −y2

−y3 0 y1

y2 −y1 0


 z2




0 −x3 x2

x3 0 −x1

−x2 x1 0




z−2




0 −x3 x2

x3 0 −x1

−x2 x1 0


 z2




0 −y3 y2

y3 0 −y1

−y2 y1 0







(3.68)
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which should be thought as defined on the four-dimensional subspace of AdS3 × S2 given

by (3.67).

Note that all the sub-blocks of the almost complex structure (3.68) are proportional

to the almost complex structure of S2 (D.3). Therefore this construction naturally extends

the map from the gauge couplings to the scalars (3.65), (2.26) to the bulk of AdS3 × S2.

For some examples in this S2 sub-sector the explicit string solutions have been written

down explicitly and are collected in appendix C. These solutions are dual to the latitude

and two longitudes Wilson loops discussed in section 2.3.1 and section 2.3.2. Using them

we can explicitly test the validity of the J -equations. Translating from polar and spherical

coordinates, the solution (C.2) is

x1 =
tanhσ0 cos τ

cosh σ
, x2 =

tanhσ0 sin τ

cosh σ
, x3 =

1

cosh σ0
, z = tanhσ0 tanhσ ,

y1 = − cos τ

z cosh(σ0 ± σ)
, y2 = − sin τ

z cosh(σ0 ± σ)
, y3 =

tanh(σ0 ± σ)

z
.

(3.69)

where the ± sign depends on whether the string wraps over the north or the south poles.

It is immediate to check that this solution satisfies x2 + z2 = 1 and that x1y1 +x2y2 +

x3y3 is a constant (3.67). It is also not difficult to check that it satisfies the J -equations.

Before going to the two-longitudes solution we recall (see section 2.3.2 and ap-

pendix C.2) that it is related by a stereographic projection to the cusp solution on the

plane. This solution has vanishing regularized action and is therefore expected to be

solution of the pseudo-holomorphic equation associated to (3.9) as we now verify. For

convenience we write the metric of the relevant subspace of AdS5 × S5 as

1

y2

(
dx2

1 + dx2
2

)
+ y2

(
dy2

1 + dy2
2

)
(3.70)

so that the pseudo-holomorphicity condition becomes

∂αx
µ − y2 √g ǫαβ∂βymδµm = 0, µ = 1, 2 , m = 1, 2. (3.71)

In these coordinates the cusp solution found in appendix C.2 reads17

x1 = r cosφ(v), x2 = r sinφ(v), (3.72)

y1 =
cosϕ(v)

rv
, y2 =

sinϕ(v)

rv
, (3.73)

where r and v are world-sheet coordinates (not in the conformal gauge) and

φ = arcsin
v

p
− 1√

1 + p2
arcsin

√
1 + 1/p2

1 + 1/v2
, (3.74)

ϕ =
1√

1 + p2
arcsin

√
1 + 1/p2

1 + 1/v2
. (3.75)

17This solution describes only half the world-sheet, the other half is a mirror image of it and all the

ensuing statements apply to it too.
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Calculating the induced world-sheet metric, one finds

grr =
1 + v2

r2v2
, grv =

1

rv
, gvv =

p2(1 + v2) − v4

v2(p2 − v2)(1 + v2)
, (3.76)

√
g =

p

rv2
√
p2 − v2

. (3.77)

With these expression one can check that the supersymmetric cusp solution indeed satis-

fies (3.71).

Now we are ready to move over to the two-longitudes solution, which is related to the

cusp solution by a coordinate change (a conformal transformation on the boundary). In

appendix C.2 it is written in global coordinates and mapping them to the Poincaré patch

we have

x1 =
2r

1 + r2 + r2v2
cosφ , x2 =

2r

1 + r2 + r2v2
sinφ , x3 =

r2 + r2v2 − 1

1 + r2 + r2v2
,

y1 =
sinϕ

z
, y2 =

cosϕ

z
, y3 = 0 , z =

2rv

1 + r2 + r2v2
,

(3.78)

with the same φ(v) and ϕ(v) as before (3.75).

As for the latitude solution, for this solution too it is clear that x2 + z2 = 1 and that

x1y1 + x2y2 + x3y3 is a constant (3.67). Using the same expressions for the world-sheet

metric (3.77) we can also check that it satisfies the J -equations.

As discussed in section 3.3, the string solutions dual to the Wilson loops can be inter-

preted as (generalized) calibrations. As such their world-sheet area can be computed by

the integral of the pull-back of J to the world-sheet. Using (3.69) and (3.78) it is easy

to verify explicitly this fact for the latitude and two longitudes loops, for which we obtain

respectively ∫
J =

∫
dσ dτ

(
1

sinh2 σ
+

1

cosh2(σ + σ0)

)
, (3.79)

and ∫
J =

∫
dr dv

p

rv2
√
p2 − v2

. (3.80)

These results are in agreement with the expected (un-regularized) world-sheet area for

these solutions. To obtain the regularized area we need to subtract the boundary term

contribution from
∫
J . The correct regularized area is then obtained from integrating

J0 (3.52), which yields for the latitude and two longitudes respectively

∫
J0 =

∫
dτ

∫ ∞

0
dσ

(
− 1

cosh2 σ
+

1

cosh2(σ + σ0)

)
= −2π sin θ0 , (3.81)

∫
J0 = 2

∫ p

0
dv

∫ ∞

0
dr

−4pr√
p2 − v2(1 + r2(1 + v2))2

= −2
πp√
1 + p2

. (3.82)

The factor 2 in the second line comes from accounting of the two branches of the two-

longitudes solution. These results are in agreement with those obtained by different meth-

ods in appendix C.
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4. Loops on a great S2 and 2d Yang-Mills theory

In the present section we focus on loops defined on the great S2 presented above in sec-

tion 2.3. We will provide some evidence, expanding on the discussion in [36], that these

loops are actually equivalent to the usual, non-supersymmetric Wilson loops of Yang-Mills

theory on a 2-sphere in the Wu-Mandelstam-Leibbrandt (WML) prescription [67 – 69].

We shall start by analyzing the structure of the combined “gauge + scalar” propagator

in Feynman gauge on the sphere and we shall prove that it effectively reduces to the

propagator of pure 2d Yang-Mills theory in the generalized Feynman gauge with gauge

parameter ξ = −1 and with the WML prescription to regularize the poles. The equivalence

of the propagators in the two theories leads to the agreement between the leading terms

in the perturbative calculation. In some examples, where there is a conjectured matrix-

model reduction of the perturbative expansion this agreement extends to the full series.

Furthermore in all the examples where we have explicit solutions to the string equations

describing those loops in AdS, the result of that calculation agrees with the strong coupling

expansion of the two dimensional theory.

We should mention, however, that we have not been able to substantiate this corre-

spondence beyond the leading order calculation and those examples, in particular we have

not been able to compute interacting graphs for generic loops. It is then conceivable that

the two dimensional theory describing those loops might be more complicated, with the

same kinetic term as YM, but with different (potentially also non-local) interactions.

If this correspondence holds, it would be one of those miracles of N = 4 SYM, where

there seems to be a “consistent truncation” to the sphere and we can simply ignore all the

fields away from it. The other remarkable fact of this correspondence is that YM in 2d

is invariant under area preserving diffeomorphisms. So a subsector of the superconformal

theory is invariant under all transformations which change angles but keep areas constant.

One interesting direction to investigate would be then to find out if those properties man-

ifest themselves in a deeper way in the entire theory beyond this subsector.

4.1 Perturbative expansion

Consider a loop (1.7) restricted to a unit S2 (defined by x4 = 0), where the scalar coupling

reduces to σRi = 2εijkx
j dxk. Expanding the exponent to second order in the fields and

computing the expectation value will then give the following contractions of the gauge

fields and the scalars

〈W 〉 ≃ 1 − 1

2N
TrP

∫
dxi dyj

[
〈Ai(x)Aj(y)〉 − εiklεjmn x

kym
〈
Φl(x)Φn(y)

〉]
. (4.1)

In the Feynman gauge, where the propagators are
〈
Aai (x)A

b
j(y)

〉
=
g2
4d

4π2

δab gij
(x− y)2

,
〈
ΦaI(x)ΦbJ(y)

〉
=
g2
4d

4π2

δab δIJ

(x− y)2
, (4.2)

and using that εiklεjml = δijδkm − δimδjk, we find (choosing a definite ordering of the loop

parameters)

〈W 〉 ≃ 1 − g2
4dN

8π2

∮

s≥t
ds dt ẋi(s) ẏj(t)

(
1

2
gij −

(x− y)i(x− y)j
(x− y)2

)
. (4.3)
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Here we have also used that x2 = y2 = 1 (and consequently ẋi xi = ẏi yi = 0), and we have

normalized the SU(N) generators as Tr (T aT b) = δab/2. The super-Yang-Mills coupling

constant gYM has been relabeled g4d to distinguish it from the two-dimensional coupling

g2d that will appear in the following.

Notice that the combined “gauge + scalar” propagator in the expression above is

not generically a constant, as was the case for the 1/2 BPS circle, a fact which led to the

identification of that operator with the zero-dimensional Gaussian matrix model of [10, 11].

But still, instead of having mass-dimension 2, as expected in a four-dimensional theory it

is dimensionless. This is the first indication that this effective propagator may serve as a

vector propagator in two dimensions.

4.1.1 Near-flat loops

As a first step toward making contact with the propagator of Yang-Mills theory on a 2-

sphere, we start with the easier case of small loops near the north pole of the S2, x3 ≃ 1.

These loops live on an almost flat surface and, as discussed in section 2.6, in the infinitesimal

limit, one recovers the construction of [34]. We may approximate

xi =

(
x1, x2,

√
1 − x2

1 − x2
2

)
≃
(
x1, x2, 1 − x2

1 + x2
2

2

)
. (4.4)

For the derivatives with respect to the loop parameter one has

ẋi ≃ (ẋ1, ẋ2, −x1ẋ1 − x2ẋ2) , (4.5)

while the distance is unmodified to leading order

(x− y)i(x− y)i ≃ (x− y)r(x− y)r , (4.6)

where now Latin indices from the end of the alphabet (r, s, . . .) run only over the directions

1 and 2.

Since it is always contracted with the tangent vectors, we may simplify the propagator

appearing in (4.3) to

∆ab
ij (x− y) =

g2
4dδ

ab

4π2

(
1

2
gij +

yi xj
(x− y)2

)
. (4.7)

Looking at ẋiẏj contracted with this expression one obtains to quadratic order (we omit

the overall coefficient with the coupling constant)

ẋiẏj∆ij ≃ ẋrẏs
(

1

2
δrs +

yr xs
(x− y)2

)
− ẋr(ysẏs)yr

(x− y)2
− (xrẋr)ẏsxs

(x− y)2
+

(xrẋr)(ysẏs)

(x− y)2

= ẋrẏs
(

1

2
δrs −

(x− y)r(x− y)s
(x− y)2

)
.

(4.8)

While this last expression looks very similar to the propagator in (4.3), it is completely

different. Here everything is written in terms of 2d vectors and one cannot drop the ẋr xr
and ẏr ys terms, since they are no longer zero for a general 2d curve.
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We want now to analyze

∆ab
rs(x− y) ≡ g2

4dδ
ab

4π2

(
1

2
δrs −

(x− y)r(x− y)s
(x− y)2

)
(4.9)

in more detail. A simple proof that it can really be interpreted as a propagator consists

in checking that it is annihilated by an appropriate two-dimensional kinetic operator. It

is easy to verify that Drs = −δrs∂2 + 2∂r∂s does indeed the job. This is a Laplacian in

generalized Feynman gauge with gauge parameter ξ = −1. The full gauge-fixed Euclidean

action in this gauge reads

L =
1

g2
2d

[
1

4
(F ars)

2 − 1

2
(∂rA

a,r)2 + ∂rb
a (Drc)a

]
, (4.10)

where

F ars = ∂[rA
a
s] + fabcAbr A

c
s , (Drc)

a = ∂rc
a + fabcAbr c

c . (4.11)

It is instructive to present also an alternative proof, based on the use of Maxwell’s

equations

∂rF
rs = 0 . (4.12)

Here F rs is an abelian field strength which in two dimensions has only one component,

F12, and Maxwell’s equations imply that it is a constant.

If equation (4.9) is a legitimate propagator, then the two-dimensional gauge field can

be expressed as (here we suppress the color indices)

Ar(x) =

∫
dy∆rs(x− y)Js(y) , (4.13)

where the current Js(y) can be taken to be localized on the loop so that

Ar(x) =

∮
ds∆rs(x− y) ẏs(s) . (4.14)

Differentiating this expression one finds the corresponding field strength

Frs(x) = ∂[rAs](x) = − g2
4d

4π2

∮
ds
ẏr(x− y)s − ẏs(x− y)r

(x− y)2
. (4.15)

Using the complex variable z = x1 − y1 + i(x2 − y2), this becomes

F12(x) = i
g2
4d

4π2

∮
dz

z
, (4.16)

which is −g2
4d/2π if the source surrounds x and vanishes otherwise. Then F12 is constant

in patches and (4.9) is indeed a propagator.

Before moving on to the S2 case we pause for a moment to notice that the expectation

value of a loop will be a function of the loop’s area. Consider for example a small circle

with radius r sitting at the north pole. The propagator (4.9) does not depend on the radius
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of the circle but the tangent vectors ẋrẏs do, so that the final result will scale as r2. More

precisely ∮
ds dt ẋr(s)ẏs(t)∆rs(x− y) = −1

2
g2
4dr

2 = −g
2
4d

2π
A1 , (4.17)

where A1 is the area of the loop. This result can be generalized to a loop of arbitrary shape

C by using (4.16)

∮

C
ds dt ẋr(s)ẏs(t)∆rs (x− y) =

∮

C
ds ẋr(s)Ar(x) =

∫

Σ1

F12 = −g
2
4d

2π
A1 , (4.18)

where Σ1 is the surface enclosed by the loop.

4.1.2 Generic loops on S2

We now consider generic loops extending over the whole sphere. To see that the expression

in (4.3) is a vector propagator on S2 we change coordinates and parameterize the sphere

in terms of complex coordinates z and z̄ as

xi =
1

1 + zz̄
(z + z̄, −i(z − z̄), 1 − zz̄) . (4.19)

In these coordinates, the S2 metric takes the standard Fubini-Study form

ds2 =
4 dz dz̄

(1 + zz̄)2
. (4.20)

From the near-flat case we expect the correct gauge choice to be the generalized Feyn-

man gauge with gauge parameter ξ = −1. The Yang-Mills term in the action (4.10)

becomes for the theory on the sphere

L =

√
g

g2
2d

[
1

4
(F aij)

2 − 1

2
(∇iAai )

2

]
= −

√
g

g2
2d

(gzz̄)2
[
(∇zA

a
z̄)

2 + (∇z̄A
a
z)

2
]
, (4.21)

where in the last equality we have ignored interaction terms, and the covariant derivatives

are taken with respect to the metric (4.20). A simple calculation shows that the propagators

∆ab
zz(z,w) = δab

g2
2d

π

1

(1 + zz̄)

1

(1 + ww̄)

z̄ − w̄

z − w
,

∆ab
z̄z̄(z,w) = δab

g2
2d

π

1

(1 + zz̄)

1

(1 + ww̄)

z − w

z̄ − w̄
,

(4.22)

satisfy
2

g2
2d

(gzz̄)2∇2
z̄∆

ab
zz(z,w) = δab

1√
g
δ2(z − w) , (4.23)

and similarly for ∆z̄z̄. By doing the change of variables to the complex coordinates (4.19),

one can then see that the effective propagator in (4.3) agrees with the 2d vector propaga-

tors (4.22) when the 2d and 4d couplings are related by

g2
2d = −g

2
4d

4π
. (4.24)
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Notice that g2
2d has 2 dimensions of mass, as becomes obvious after reinserting the appro-

priate powers of the radius of the S2 in the formula above.

The alternative argument based on the Maxwell’s equations can also be repeated in

this instance. Given a source along the curve y and using the effective propagator on S2,

the gauge field at x is

Ai =
g2
2d

π

∫
dyj

(
1

2
δij −

(x− y)i(x− y)j
(x− y)2

)
, (4.25)

and the resulting field-strength, gotten by differentiation and projection in the directions

tangent to the sphere, is

Fij = −g
2
2d

π

∫
ds

−ẏiyj + ẏjyi
(x− y)2

. (4.26)

The associated dual scalar F̃ = 1
2ǫijkFijxk reads

F̃ = −g
2
2d

π

∫
ds
εijk ẏ

iyjxk

(x− y)2
. (4.27)

To evaluate F̃ explicitly we define θ(s) to be the angle between the points x and y. Then

the numerator is proportional to the one-form normal to dθ, which we label by dφ. This

gives

F̃ =
g2
2d

π

∫
dφ

sin2 θ

2(1 − cos θ)
=
g2
2d

π

∫
dφ cos2 θ

2
=
g2
2d

2π

∫

Σ2

dθ dφ sin θ = 2g2
2d

A2

A , (4.28)

where A2 is the area of the part of the sphere enclosed by the loop and not including x

and A the total area. Clearly this is a constant unless x crosses the loop. Then it is simple

to evaluate the Wilson loop at the quadratic order using Stokes’ theorem for the x integral

in (4.3). We get

〈W 〉 = 1 − N

4

∫

Σ1

F̃ +O(g4
2d) = 1 − g2

2dN
A1A2

2A +O(g4
2d) , (4.29)

and the result is the product of the areas of the two parts of the sphere separated by the

loop and it clearly does not depend on the order of the y and x integrals.

We were unfortunately not able to calculate higher-order graphs for loops of arbitrary

shape, neither in four dimensions nor explicitly in two. Note that as opposed to the light-

cone gauge, the preferred gauge choice in two dimensions, in our generalized Feynman

gauge there are interaction vertices and the ghosts do not decouple, so the calculation is

non-trivial. As an example of this complexity, we report in appendix E the computation

of the interacting graphs at order λ2 in the ξ = −1 gauge, in the hope that this could be

matched at some intermediate stage with a similar calculation in four dimensions. We were

not able to find such a matching for a general curve, but were able to carry it through in the

case of a circular loops. We find that also in this gauge, as expected from gauge invariance,

the interacting graphs cancel, but this cancellation is achieved in a very non-trivial way.

It would of course be extremely useful to better understand the relation between 4d

and 2d interactions, for example it would be nice to study 4d gauge choices such that the
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A

A2

1

Figure 3: An arbitrary curve on S2 divides it into two surfaces, one with area A1 and the other

with area A2. In all the calculations that we did the expectation value of the Wilson loop turns

out to be a function only of the product of those two areas.

combined gauge and scalar propagators reduce to the light-cone gauge propagator in 2d,

where computations are trivial. Then one could hope that in such a 4d gauge it would be

possible to show that by integrating the interacting vertices over the directions transverse

to the sphere, they cancel, as they do in the corresponding gauge in 2d.

In any case, two-dimensional Yang-Mills is a soluble theory [70, 71], so we can use

known results (derived by other methods) and compare them to some results in four di-

mensions, including some strong coupling results from the AdS dual of N = 4 SYM, which

we will do in the next subsection.

The above perturbative calculation (4.29) of the Wilson loop in two dimensions is

very similar to the one performed by Staudacher and Krauth in [72] on R
2 in light-cone

gauge. The important part in their calculation is not the choice of gauge, but the choice of

regularization prescription of a pole in the derivation of the configuration-space propagator.

The one they used, which can be applied also in Euclidean signature, was proposed by Wu,

Mandelstam, and Leibbrandt (WML) [67 – 69].

Going back for a moment to the near-flat case and changing coordinates from x1, x2

to x± = x1 ∓ ix2, it is easy to see that our (4.9) has the exact same structure of the WML

propagator on the plane as in [72], up to a factor of 2

〈A+(x)A+(y)〉 ∝ x+ − y+

x− − y−
. (4.30)

In our gauge, with ξ = −1, there is a propagator also for A− (but no mixed term). In the

light-cone gauge one sets A− = 0 and the A+ propagator is double ours. The same applies

for the sphere, where one may take Az̄ = 0 as the light-cone gauge and then, using the

same prescription, the propagator for Az would be double the one in (4.22).

Staudacher and Krauth were able to sum up all the ladders and find that the Wilson

loop is given by

〈W 〉 =
1

N
L1
N−1

(
g2
2dA1

)
exp

[
−g

2
2dA1

2

]
, (4.31)
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where L1
N−1 is a Laguerre polynomial and A1 is the area enclosed by the loop. This is equal

to the expectation value of a Wilson loop in the Gaussian Hermitian matrix model (2.8),

after a rescaling of the coupling constant.18 This expression has an obvious generalization

to S2 with the simple replacement A1 → A1A2/A, where the combination of the areas is

the same as appeared in (4.29).

The reader may be puzzled by those formulas, since they do not agree with the exact

solution of YM in two dimensions [73, 74]. This confusion was resolved by Bassetto and

Griguolo [75], who showed that (4.31) may be extracted from the exact result by restricting

to the zero instanton sector following the expansion of [76] (see also [74]). It was therefore

concluded that the perturbative calculation of [72], using the light-cone gauge and the WML

prescription for performing the momentum integrals does not capture non-perturbative

effects.

The two dimensional propagator we found is thus not in the same gauge, but it also

is defined by the WML prescription. Since we expect the result not to depend on gauge,

we conclude that the result of the perturbative 2-dimensional YM sum that our four-

dimensional Wilson loops seem to point to is given by

〈W 〉 =
1

N
L1
N−1

(
−g2

4d

A1A2

A2

)
exp

[
g2
4d

2

A1A2

A2

]
. (4.32)

The expansion of this expression to order g2
4d agrees with the aforementioned result (4.29).

In the next subsection we will provide further evidence that this expression correctly cap-

tures the Wilson loops in four dimensions.

Note that in relating our observables in 4-dimensions and those in 2d, see (4.24),

the real 4-dimensional coupling is, interestingly, matched with an imaginary one in 2-

dimensional. This could be associated to the fact that the supersymmetric loops in Eu-

clidean N = 4 SYM (1.1) have an imaginary scalar coupling and are non-unitary observ-

ables. In many cases their expectation values are greater than 1 (which is manifested in

the dual AdS by negative action) and this seems to be represented in the 2-dimensional

model by this change in sign of the square of the coupling.

4.2 Examples and strong coupling checks

Beyond the agreement at leading order in perturbation theory, which led us to propose that

Wilson loops on S2 may be described by 2-dimensional YM, in this section we test this

hypothesis further. We compare the result of some perturbative and some strong coupling

calculations of specific operators in four dimensions with the exact (perturbative) result in

two dimensions (4.32).

To compare with results from AdS we will need the asymptotic behavior of (4.32) at

large N and large g2
4dN . In this limit it reduces to

〈W 〉 ≃ A√
g2
4dNA1A2

I1




2
√
g2
4dNA1A2

A


 ≃ exp




2
√
g2
4dNA1A2

A


 , (4.33)

18This result is valid for U(N) gauge group. The exact formula for SU(N) can be easily deduced from

this one, see [72].
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with I1 a modified Bessel function of the first kind.

4.2.1 Latitude

Let us start by considering the circle at latitude θ0 discussed above in section 2.3.1. This

loop was studied in [24], where it was shown that its combined gauge+scalar propagator

is the same as the propagator of the 1/2 BPS circle modulo a rescaling of the coupling

constant, g2
4d → g2

4d sin2 θ0. Assuming the vanishing of interacting graphs at all orders in

perturbation theory (as is usually also assumed for the 1/2 BPS circle [10, 11]), one can

then resum all the ladders with a matrix model computation and show that the expectation

value of the latitude is equal to (4.32) after the replacement A1A2/A2 → 1
4 sin2 θ0. For a

latitude the areas of the patches bound by the curve are

A1 = 2π(1 − cos θ0) , A2 = 2π(1 + cos θ0) , (4.34)

so indeed A1A2 = 1
4A2 sin2 θ0, as claimed.

One can test this all-order result also from a string computation in AdS5×S5 [24], from

which one finds that the classical action of the string is S = −
√
g2
4dN sin θ0, consistently

with the strong coupling limit of the matrix model result19 (4.33). Finally, a further check

can be obtained for loops in high dimensional symmetric representations of the gauge

group [13]: The loop is calculated in this case using a D3-brane rather than a fundamental

string and, again, the resulting action agrees with the matrix model result, including all

1/N corrections at large g2
4dN .

4.2.2 Two longitudes

The second example we consider are the two longitudes discussed in section 2.3.2. In this

case it is not obvious a priori that there exists an all-order matrix model computation,

since the rungs connecting the two different arcs are not constant.

For the two longitudes separated by an angle δ the areas of the two patches are given

by

A1 = 2δ , A2 = 2(2π − δ) . (4.35)

And those factors then come into the one-loop expression (4.29)

g2
4dN

8π2
δ(2π − δ) . (4.36)

This can also be verified by a direct integration of the combined propagator along the loop.

This clearly agrees with the weak coupling expansion of (4.32), as is true for all our

supersymmetric loops on a great S2, but for the latitude loops we can also test this ex-

pression at strong coupling, since we have explicit string solutions in AdS5 × S5. Those

are described in detail in appendix C.2, where it is found by a stereographic projection to

19In string theory one also finds a second, unstable surface with S = +
p

g2
4dN sin θ0, which matches

another saddle point of the matrix model.
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a cusp in the plane and then calculated by generalizing [61]. The result for the classical

action (C.28) reads

S = −

√
g2
4dNδ(2π − δ)

π
. (4.37)

Recalling that the expectation value of the Wilson loop is the exponent of minus the

classical action, we exactly recover equation (4.33).

We see then that also in this case the perturbative and the strong coupling results

are related to the 1/2 BPS circle by a simple rescaling of the coupling constant, g2
4d →

g2
4dδ(2π − δ). This suggests that the expectation value of this loop may also be captured

by a matrix model, although the propagators are not constant in this case.

5. Discussion

In this paper we have studied a family of supersymmetric Wilson loops in N = 4 SYM

which were proposed in [35]. The construction assumes the loops are restricted to an S3

submanifold of space-time (or Euclidean space) and then for a curve of arbitrary shape

we give a prescription for the scalar couplings that guarantees that the resulting loop is

globally supersymmetric. This idea is inspired by the supersymmetric loops which have

trivial expectation values [34], but our loops are more interesting observables.

We proposed several different angles to study those loops. First we analyzed their gen-

eral properties, like the supersymmetry they preserve. We studied the dual string surfaces

in AdS5 × S5, and concentrating on loops on S2 we pointed out a possible connection to

YM theory in two dimensions. We also mentioned briefly the connection to topologically

twisted YM.

In the general analysis we focused on certain subclasses of loops which have enlarged

supersymmetry and studied them in detail. One example is 1/2 BPS — a great circle, a

few cases were 1/4 BPS: The latitude line on S2, two half-circles, or the longitudes on S2,

and the “parallel circles” or Hopf fibers on S3. A general loop on S2 preserves 1/8 of the

supersymmetries, as do loops built on the base of the Hopf fibration. Some special cases of

1/16 BPS loops are the infinitesimal ones, which reside in a limit where one recovers the

“trivial” loops of [34]. Another example that is 1/16 BPS and where we found the string

solutions are general toroidal loops.

This analysis shows the richness of these operators we have constructed. One can fo-

cus on subsectors with fewer operators and more supersymmetry, which may simplify some

calculations, or one can go to the more general cases which are far less restrictive but also

more complicated. From an algebraic point of view we found a myriad of different subalge-

bras of PSU(2, 2|4) preserved by the different subsectors: OSp(1|2), SU(1|2), OSp(1|2)2,
SU(1|2)2, OSp(2|4), SU(2|2) and OSp(4⋆|4). We have included an extensive analysis of

those symmetries in section 2 to facilitate future study of those subsectors.

Our next angle was that of the dual string theory on AdS5 × S5, where the Wilson

loops (in the fundamental representation) are described by fundamental strings and in our

case are restricted to live within an AdS4 ×S2 subspace. For some of the specific examples

enumerated in section 2 we have explicit solutions of the string equations of motion. We
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gathered them all in appendix C. While some of those solutions were known before, most

of them (the “longitudes”, the “latitudes on the Hopf base” and the “toroidal loops”) are

new.

But beyond the explicit solutions in those special examples we found some general

properties satisfied by the strings describing those loops (following similar ideas in [52]).

First we found an almost complex structure on the AdS4 × S2 subspace where the string

solution lives. Its structure is inspired by the supersymmetry properties of the loops and is

a generalization of the almost complex structure on S6 (see appendix D). We then showed

that a string that is pseudo-holomorphic with respect to this almost complex structure

has the correct boundary conditions, preserves the right supersymmetries and satisfies the

σ-model equations of motion. In the specific examples where we had explicit solutions the

strings are indeed pseudo-holomorphic and we are inclined to believe that this condition

will be satisfied in general, though we do not have an existence proof.

Another approach at studying those loops was to find an analogous theory with the

same operators. This was inspired by the fact that the circle seems to be captured by a

0-dimensional matrix model [10, 11]. We presented some evidence that when the loops

are restricted to a great S2 and preserve four supercharges they may be described by a

perturbative calculation in 2-dimensional bosonic YM on S2. As with the AdS calculation

mentioned in the previous paragraph, we do not have a proof of this equivalence, but all

the explicit checks that we could make worked.

The checks include the ladder diagrams for all the loops on S2 (in a certain gauge, see

appendix E), explicit string theory results for the “latitude” and “longitudes” examples

as well as an agreement with the 0-dimensional matrix model. A peculiar fact is that the

Wilson loops do not agree with the full result of YM in 2 dimensions, but rather to a pertur-

bative sector excluding instanton contributions [75] (the instantons of 2-dimensional YM

are abelian monopoles). This feature of the agreement might appear somewhat unnatural.

On one side in fact there is a perfectly defined set of operators of N = 4 SYM, while on the

other side the zero-instanton sector of two-dimensional YM is not clearly defined. This is

because the instanton numbers in this theory are not topological quantities (the instantons

are unstable and can unwind in the U(N) space).20 It would be then extremely interesting

to understand whether the full 2-dimensional result, including instanton corrections is also

related to such Wilson loops in some way.

A remarkable fact about this purported correspondence is that 2-dimensional YM is

invariant under area-preserving diffeomorphisms. So by restricting to a sphere of fixed

radius and adding the scalar couplings we found operators in N = 4 theory whose expec-

tation value depends on certain areas on the sphere. We find this quite a surprising result

in a conformal theory.

One last approach to study our loops is through a topologically twisted version of

N = 4 SYM. We presented the relevant twist, where three of the six scalars become a

triplet under the twisted Lorentz group and the other three are singlets. The novel feature

about our loops is that they are not invariant under the usual supersymmetry generators,

20We thank David Gross for raising this issue.
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but rather under a linear combination with the super-conformal ones. This means that

those operators are observables in the twisted theory where the BRST charges are made

out of those linear combinations. We have not constructed this theory in any detail but we

think it would be interesting to do so. We did use this twisting to motivate the string-theory

construction in section 3 and we also expect it to be useful in trying to prove that those

Wilson loops may be calculated in terms of a lower-dimensional theory, like 2-dimensional

YM, or in proving invariance under area-preserving diffeomorphisms.

Beyond the operators studied in this paper (and the ones in [34]) we find it quite likely

that there are other supersymmetric Wilson loops. These non-local operators, as well as

surface operators (for example [77 – 79]) and domain walls [80] are much less studied than

local operators but they have very interesting properties.

While this is quite an extensive report on supersymmetric Wilson loops on S3 where

we presented many new results, it is also satisfying to see how many interesting questions

were left unanswered. This is an indication to us that we have touched on an interesting

subsector of N = 4 SYM which is very rich, yet one where exact results are feasible.
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A. Superconformal algebra

In this appendix we collect our conventions for the N = 4 superconformal algebra

PSU(2, 2|4), following [28]. We denote by Jαβ , J̄
α̇
β̇

the generators of the SU(2)L × SU(2)R

Lorentz group, and by RAB the 15 generators of the R-symmetry group SU(4). The re-

maining bosonic generators are the translations Pαα̇, the special conformal transformations

Kαα̇ and the dilatations D. Finally the 32 fermionic generators are the Poincaré super-

symmetries QAα , Q̄α̇A and the superconformal supersymmetries SαA, S̄α̇A.

The commutators of any generator with Jαβ, J̄
α̇
β̇

and RAB are canonically dictated

by the index structure, while commutators with the dilatation operator D are given by[
D ,G

]
= dim(G)G, where dim(G) is the dimension of the generator G.
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The remaining non-trivial commutators are

{
QAα , Q̄α̇B

}
= δABPαα̇ ,

{
SαA , S̄

α̇B
}

= δBAK
αα̇ ,

[
Kαα̇ , QAβ

]
= δαβ S̄

α̇A ,
[
Kαα̇ , Q̄β̇A

]
= δα̇

β̇
SαA ,

[
Pαα̇ , S

β
A

]
= −δβαQ̄α̇A ,

[
Pαα̇ , S̄

β̇A
]

= −δβ̇α̇QAα ,
{
QAα , S

β
B

}
= δABJ

β
α + δβαR

A
B +

1

2
δABδ

β
αD ,

{
Q̄α̇A , S̄

β̇B
}

= δBA J̄
β̇
α̇ − δβ̇α̇R

B
A +

1

2
δBAδ

β̇
α̇D ,

[
Kαα̇ , Pββ̇

]
= δα̇

β̇
Jαβ + δαβ J̄

α̇
β̇

+ δαβ δ
α̇
β̇
D .

(A.1)

For the analysis of the supersymmetries preserved by the various Wilson loop operators

discussed in the paper, it is natural to consider the breaking of the R-symmetry group

SU(4) → SU(2)A × SU(2)B . Explicitly, we can split the 4 and 4̄ indices of SU(4) as

GA → Gȧa GA → Gȧa , (A.2)

where ȧ and a are respectively SU(2)A and SU(2)B fundamental indices.

All SU(2) indices can be raised/lowered by using the appropriate epsilon tensor, for

which we adopt the conventions

εrs =

(
0 1

−1 0

)
εrs =

(
0 −1

1 0

)

Gr = εrsGs , Gr = εrsGs ,
(A.3)

where the indices r, s belong to either SU(2)L, SU(2)R, SU(2)A, or SU(2)B .

The R-symmetry generators decompose under SU(4) → SU(2)A × SU(2)B as 15 →
(3,1) + (1,3) + (3,3). This can be explicitly written as

RAB → Rȧa
ḃb

=
1

2
δab Ṫ

ȧ
ḃ
+

1

2
δȧ
ḃ
T ab +

1

2
M ȧa

ḃb
(A.4)

where Ṫ ȧ
ḃ
and T ab are respectively the SU(2)A and SU(2)B generators, and the 9 generators

in the (3,3) are given by M ȧa
ḃb

, which is traceless in each pair of indices

δḃȧM
ȧa
ḃb

= δbaM
ȧa
ḃb

= 0 . (A.5)

Inserting the decomposition (A.4) in the SU(4) algebra

[
RAB , R

C
D

]
= δADR

C
B − δCBR

A
D , (A.6)

and projecting onto singlets of SU(2)A and of SU(2)B , one can verify that Ṫ ȧ
ḃ

and T ab
satisfy SU(2) commutation relations with standard normalization

[
Ṫ ȧ
ḃ
, Ṫ ċ

ḋ

]
= δȧ

ḋ
Ṫ ċ
ḃ
− δċ

ḃ
Ṫ ȧ
ḋ
,

[
T ab , T

c
d

]
= δadT

c
b − δcbT

a
d . (A.7)
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One can also check that Ṫ ȧ
ḃ

and T ab act on the supercharges according to canonical SU(2)

commutation rules. For example starting from

[
RAB , Q

C
α

]
= −δCBQAα +

1

4
δABQ

C
α , (A.8)

the above decomposition (A.4) can be seen to imply

[
Ṫ ȧ
ḃ
, Qċcα

]
= −δċ

ḃ
Qȧcα +

1

2
δȧ
ḃ
Qċcα ,

[
T ab , Q

ċc
α

]
= −δcbQċaα +

1

2
δabQ

ċc
α , (A.9)

and similarly for the other supercharges.

Commutators involving theM ȧa
ḃb

may be written more conveniently in the basis defined

by

M ȧa
ḃb

= (τṁ)ȧ
ḃ
(τm)abMṁm , Ṫ ȧ

ḃ
= (τṁ)ȧ

ḃ
Ṫṁ , T ab = (τm)ab Tm , (A.10)

where ṁ, m are indices in the 3 of SU(2)A and SU(2)B respectively, and τṁ, τm are Pauli

matrices. Projecting (A.6) onto the (3, 3) representation of SU(2)A × SU(2)B under the

decomposition (A.4), one can obtain the following commutation relations

[
Ṫṁ ,Mṅm

]
= iεṁṅṗMṗm ,

[
Tm ,Mṁn

]
= iεmnpMṁp ,

[
Mṁm ,Mṅn

]
= i
(
δmnεṁṅṗṪṗ + δṁṅεmnpTp

)
.

(A.11)

For completeness, we may also list the action of the Mṁm on the supercharges, which can

be written as

[
Mṁm, Q

ȧa
α

]
= −1

2
(τṁ)ȧ

ḃ
(τm)abQ

ḃb
α ,

[
Mṁm, S

ȧa
α

]
=

1

2
(τṁ)ȧ

ḃ
(τm)abS

ḃb
α ,

[
Mṁm, Q̄

a
α̇ȧ

]
= −1

2
(τṁ)ḃȧ(τm)abQ̄

b
α̇ḃ
,

[
Mṁm, S̄

a
α̇ȧ

]
=

1

2
(τṁ)ḃȧ(τm)abS̄

b
α̇ḃ
.

(A.12)

As they can be useful for explicit calculations of the superalgebras presented in ap-

pendix B, we finally list here the remaining non-trivial commutation relations of the su-

perconformal algebra written in SU(2)A × SU(2)B notation

{
Qȧaα , Q̄b

α̇ḃ

}
= −εabδȧ

ḃ
Pαα̇ ,

{
Sȧaα , S̄b

α̇ḃ

}
= −εabδȧ

ḃ
Kαα̇ ,

[
Kαα̇ , Q

ȧa
β

]
= εαβ S̄

ȧa
α̇ ,

[
Kαα̇ , Q̄

a
β̇ȧ

]
= εα̇β̇S

a
αȧ ,

[
Pαα̇ , S

ȧa
β

]
= εαβQ̄

ȧa
α̇ ,

[
Pαα̇ , S̄

a
β̇ȧ

]
= εα̇β̇Q

a
αȧ ,

{
Qȧaα , S ḃbβ

}
= εȧḃεabJαβ +

1

2
εαβ

(
εabT ȧḃ + εȧḃT ab −M ȧḃ ab − εȧḃεabD

)
,

{
Q̄aα̇ȧ , S̄

b
β̇ḃ

}
= −εȧḃεabJ̄α̇β̇ +

1

2
εα̇β̇

(
εabṪȧḃ − εȧḃT

ab +Mab
ȧḃ

+ εȧḃε
abD

)
.

(A.13)

B. Superalgebra calculations

In this appendix we collect some of the explicit calculations of the superalgebras for the

different subsectors of Wilson loop operators presented in section 2.
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B.1 Loops on S2

To determine what is the full superalgebra preserved by this family of Wilson loop oper-

ators, it is first convenient to rewrite the U(1) generator (2.25) using SU(2)L × SU(2)R
notation as

L ≡ 1

2
I
αα̇ (Pαα̇ −Kαα̇) . (B.1)

Then using the superconformal algebra (A.13) one can obtain the following commutation

relations {
Qa ,Qb

}
= −2T ab ,

{
Q̄a , Q̄b

}
= 2T ab ,

{
Qa , Q̄b

}
= −2εabL ,

[L ,Qa] =
1

2
Q̄a ,

[
L , Q̄a

]
=

1

2
Qa ,

(B.2)

while the commutators of the SU(2)B generators with the supercharges and with themselves

are canonical, as in (1.19), and we do not report them here. The algebra (B.2) is an

OSp(2|2) superalgebra (modulo possible rescalings of the charges to bring it in a standard

form).

This superalgebra is isomorphic to SU(1|2) as can be seen by defining the L eigenstates

Qa
± ≡ 1

2

(
Qa ± Q̄a

)
. (B.3)

In terms of these charges, the superalgebra above can be written as

{
Qa

+ ,Qb
+

}
=
{
Qa

− ,Qb
−

}
= 0 ,

{
Qa

+ ,Qb
−

}
= −T ab + εabL ,

[
L ,Qa

±
]

= ±1

2
Qa

± ,

(B.4)

which is indeed the superalgebra SU(1|2) (again we do not write the canonical SU(2)B
commutation relations). Notice that from (B.4) we can see that the supercharges Qa

+ and

Qa
− do square to zero. However these operators are not scalar after the twisting (1.20), so

one may not use them to define a topological BRST charge in the usual sense.

B.2 Latitude

We begin by rewriting the bosonic generators in SU(2)L × SU(2)R notation in the conven-

tions given in appendix A. The SU(2) obtained from (2.5) after a translation and dilatation

is generated by

L
(θ0)
1 =

−i
2 sin θ0

(τ3)
αα̇ (Pαα̇ −Kαα̇) − i cot θ0D ,

L
(θ0)
2 =

1

2
I
αα̇ (Pαα̇ −Kαα̇) ,

L
(θ0)
3 =

1

sin θ0

(
J3 + J̄3

)
+

1

2
cot θ0 I

αα̇ (Pαα̇ +Kαα̇) .

(B.5)
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where J3 = 1
2(τ3)

α
βJ

β
α and similarly for J̄3. The generator of the U(1) symmetry mixing

Lorentz and R-symmetry can be written as

C ≡ 1

sin θ0

(
J̄3 − J3 + Ṫ3

)
. (B.6)

where Ṫ3 = 1
2(τ3)

ȧ
ḃ
Ṫ ȧ
ḃ
, and the normalization by sin θ0 is for later convenience.

We can now check that these bosonic symmetries together with the eight supercharges

in (2.33) and (2.34) form the superalgebra SU(2|2). To this purpose, one has to find

linear combinations of the above supercharges which transform as (2,2) + (2,2) under

SU(2) × SU(2)B . These can be constructed from the following L
(θ0)
3 eigenstates

Qa,±
(1) =

1

2

(
Qa

(1) ± Q̄a
(1)

)
, Qa,±

(2) =
1

2

(
Qa

(2) ±Q′ a
(2)

)
. (B.7)

After some algebra, one finds that the relevant combinations which give SU(2) doublets

are

Qa
η ≡

1√
2

(
Qa,+

(1) + Qa,−
(2)

iQa,−
(1) − iQa,+

(2)

)
, Saη ≡ 1√

2

(
iQa,+

(1) − iQa,−
(2)

Qa,−
(1) + Qa,+

(2)

)
, (B.8)

where η = 1, 2 is a fundamental index in the SU(2) in (B.5). Defining as usual the generators

Lηδ ≡ (τe)
η
δL

(θ0)
e , e = 1, 2, 3 (B.9)

the full superalgebra preserved by the latitude Wilson loop can be finally written as

[
T ab ,Qc

η

]
= −δbcQa

η +
1

2
δabQc

η ,
[
T ab ,Scη

]
= −δbcSaη +

1

2
δabScη ,

[
Lηδ ,Qa

γ

]
= δηγQa

δ −
1

2
δηδQa

γ ,
[
Lηδ ,Saγ

]
= δηγSaδ − 1

2
δηδSaγ ,

{
Qa
η ,Sbδ

}
= ǫabLηδ + ǫηδT

ab − ǫabǫηδ C ,

(B.10)

and all other commutators vanish (except the standard SU(2) algebras for T ab and Lηδ).

Notice in particular that C behaves as a central charge of the algebra. This is the superal-

gebra SU(2|2), as stated above.

B.3 Two longitudes

First, to recognize how the SO(4) symmetry rotating Φ3, Φ4, Φ5 and Φ6 arises from the

algebra of the fermionic charges (2.40), one can evaluate commutators of supercharges with

the same chirality. This yields
{
Qa

(1) ,Qb
(1)

}
= −2T ab ,

{
Qa

(2) ,Qb
(2)

}
= −2T ab ,

{
Qa

(1) ,Qb
(2)

}
= 2Mab

1̇2̇
,

{
Q̄a

(1) , Q̄b
(1)

}
= 2T ab ,

{
Q̄a

(2) , Q̄b
(2)

}
= 2T ab ,

{
Q̄a

(1) , Q̄b
(2)

}
= −2Mab

1̇2̇
,

(B.11)

where the Mab
ȧḃ

are the generators in the (3,3) of SU(2)A × SU(2)B arising in the decom-

position of SU(4) discussed in appendix A, see (A.4). In the basis defined in (A.10), the

R-symmetry generators in (B.11) may be written as

T ab = −(τmε)
ab Tm , Mab

1̇2̇
= −(τmε)

abM3̇m . (B.12)
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The six generators Tm,M3̇m commute with the SO(2) generated by Ṫ3 (which is the sym-

metry rotating Φ1 and Φ2), and as expected generate a SO(4) subgroup of SU(4), as can

be seen using the algebra (A.11). Explicitly, defining the linear combinations

T̂m =
1

2
(Tm +M3̇m) , T̃m =

1

2
(Tm −M3̇m), (B.13)

one finds that
[
T̂m , T̂n

]
= iεmnpT̂p ,

[
T̃m , T̃n

]
= iεmnpT̃p ,

[
T̂m , T̃n

]
= 0 , (B.14)

which is indeed SU(2) × SU(2) = SO(4). By looking at the action of the Tm and M3̇m on

the supercharges, one can construct the following orthogonal combinations

Q̂a ≡ 1

2

(
Qa

(1) −Qa
(2)

)
, Q̃a ≡ 1

2

(
Qa

(1) + Qa
(2)

)
, (B.15)

and analogously for the other chirality. These combinations satisfy
{
Q̂a , Q̂b

}
= 2(τmε)

ab T̂m ,
{
Q̃a , Q̃b

}
= 2(τmε)

ab T̃m ,
[
T̂m , Q̂a

]
= −1

2
(τm)abQ̂b ,

[
T̃m , Q̃a

]
= −1

2
(τm)abQ̃b ,

(B.16)

while all commutators mixing generators in the first and second column of the above

equation vanish. A similar algebra applies of course to the negative chirality charges.

The remaining U(1) × U(1) bosonic symmetry generated by

L ≡ 1

2
I
αα̇ (Pαα̇ −Kαα̇) , I ≡ 1

2
ταα̇3 (Pαα̇ +Kαα̇) , (B.17)

arises from commutators of supercharges of opposite chirality. By explicitly evaluating

the relevant commutators, it is easy to see that L acts on any supercharge in (2.40) by

changing its chirality, as in (B.2), while acting with I changes chirality together with

flipping a charge of type “(1)” into a charge of type “(2)”. One can then see that defining

the linear combinations

L̂ =
1

2
(L− I) L̃ =

1

2
(L+ I) (B.18)

together with the L̂ and L̃ eigenstates

Q̂a
± ≡ 1

2

(
Q̂a ± ̂̄Qa

)
Q̃a

± ≡ 1

2

(
Q̃a ± ˜̄Qa

)
(B.19)

allows one to write the full algebra in the direct product form
{
Q̂a

+ , Q̂b
+

}
=
{
Q̂a

− , Q̂b
−

}
= 0 ,

{
Q̃a

+ , Q̃b
+

}
=
{
Q̃a

− , Q̃b
−

}
= 0 ,

{
Q̂a

+ , Q̂b
−

}
= (τmε)

ab T̂m + ǫabL̂ ,
{
Q̃a

+ , Q̃b
−

}
= (τmε)

ab T̃m + ǫabL̃ ,

[
L̂ , Q̂a

±
]

= ±1

2
Q̂a

± ,
[
L̃ , Q̃a

±
]

= ±1

2
Q̃a

± ,

[
T̂m , Q̂a

±
]

= −1

2
(τm)abQ̂b

± ,
[
T̃m , Q̃a

±
]

= −1

2
(τm)abQ̃b

± ,

(B.20)

with all other not listed commutators vanishing. As claimed above, this is a SU(1|2) ×
SU(1|2) superalgebra. As a side remark, notice that the SU(1|2) algebra (B.4) preserved

by the great S2 loops is just a diagonal subgroup of the one we found here.
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C. String solutions

In this appendix we report the explicit computations of the string solutions in AdS5 × S5

corresponding to the examples used in the main text.

C.1 Latitude

The string solution for the 1/4 BPS latitude was first found in [59, 24]. Here we reprint the

result in a coordinate system more suited for our present discussion.21 We use the metric

ds2 =
L2

z2
(dz2 + dr2 + r2dφ2 + dx2

3) + L2(dϑ2 + sin2 ϑ dϕ2) , (C.1)

where (r, φ) are radial coordinates in the (1, 2) plane. For the latitude at angle θ0, the

boundary of the string should end along the curve at r = sin θ0 and x3 = cos θ0, while on

the sphere side of the ansatz it should end at ϑ0 = π/2 − θ0 see (2.28) and figure 1. The

boundary conditions represent motion around both spheres in the same direction, but with

a phase difference of π. The string solution will be given by a constant x3, while in the

conformal gauge we may take the ansatz z = z(σ), r = r(σ), ϑ = ϑ(σ) and φ = ϕ+ π = τ .

The solution is given by

z = sin θ0 tanhσ , r =
sin θ0
coshσ

, sinϑ =
1

cosh(σ0 ± σ)
. (C.2)

The integration constant σ0 is fixed by requiring that at σ = 0 one has sinϑ0 = cos θ0 =

1/ cosh σ0. The two signs in the expression for sinϑ correspond to wrapping the string

either around the north pole of the sphere or around the south pole.

The value of the classical action of the string is

S = ∓
√
λ sin θ0 . (C.3)

The loop corresponding to the solution wrapping the “short side” of the sphere (around

the north pole, with the − sign in the expression above) has then a value

〈W 〉 = e
√
λ sin θ0 , (C.4)

while the other solution corresponds to an unstable instanton, whose value is exponentially

suppressed at large λ.

C.2 Two longitudes

The basic idea in finding the string solution for the two longitudes on the S2 is to observe

that a stereographic projection to the plane will map this loop to a single cusp at the origin

with an opening angle δ (see figure 4). This will still be 1/4 BPS and will be of the type

invariant under the Q supercharges [34], therefore it will have trivial expectation value.

In that way our operator is similar to the usual 1/2 BPS circle that is conformal to the

straight line which has trivial value. The operator on the sphere will have non-trivial value

because of the compactness of the space.

21Compared to those references, we translated the circle in the x3 and rescaled it appropriately to fit on

S3. We also replaced θ0 → π/2 − θ0.
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δ

b.a.

δ

Figure 4: The quarter-BPS Wilson loop made of two longitudes (a.) can be mapped to a stere-

ographic projection the a cusp on the plane (b.). The scalar couplings (see figure 2 b.) are not

altered and are the natural coupling for a supersymmetric cusp in the plane.

We shall therefore first find the string solution for a single cusp of angle δ in the plane

and then we shall conformally transform it to the interesting system which is compact.

The cusp can be solved by using the conformal symmetry, as was done in [61]. Take

the metric on AdS3 × S1 subspace of AdS5 × S5 to be

ds2 =
L2

z2

(
dz2 + dr2 + r2dφ2

)
+ L2dϕ2 . (C.5)

If the cusp is at the origin r = 0, it is invariant under rescaling of r. This symmetry is then

extended to the string world-sheet, where the z coordinate will have a linear dependence

on r. As world-sheet coordinates we take r and φ. The ansatz for the other coordinates is

z = r v(φ) , ϕ = ϕ(φ) . (C.6)

The Nambu-Goto action is (prime is the derivative with respect to φ)

SNG =

√
λ

2π

∫
dr dφ

1

r v2

√
v′2 + (1 + v2)(1 + v2ϕ′2) . (C.7)

The r dependence is trivial and it is easy to find two conserved quantities, the energy and

the canonical momentum conjugate to ϕ

E =
1 + v2

v2
√
v′2 + (1 + v2)(1 + v2ϕ′2)

, J =
(1 + v2)ϕ′

√
v′2 + (1 + v2)(1 + v2ϕ′2)

. (C.8)

The BPS condition turns out, not surprisingly, to be E = |J |. To derive it consider the

Legendre transform term which should be added to the action. Using the equations of

motion it is

SL.T. =
√
λ

2π

∫
dr dφ (z pz)

′ =

√
λ

2π

∫
dr dφ

−2 − v′2 − v2(1 + ϕ′2)

r v2
√
v′2 + (1 + v2)(1 + v2ϕ′2)

. (C.9)
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Requiring that the total Lagrangian vanishes locally leads to

v4ϕ′2 − 1 = 0 . (C.10)

This can be written in terms of the conserved quantities in (C.8) as E2 = J2.

The equation of motion for v is

v′ =
1 + v2

v2

√
p2 − v2 , p =

1

E
. (C.11)

which integrates to

φ = arcsin
v

p
− 1√

1 + p2
arcsin

√
1 + 1/p2

1 + 1/v2
. (C.12)

This expression is valid over half the world-sheet, till the midpoint. Beyond that we should

analytically continue to

φ = π − arcsin
v

p
− 1√

1 + p2

(
π − arcsin

√
1 + 1/p2

1 + 1/v2

)
, (C.13)

The final value of φ when v reaches zero again is

δ = π

(
1 − 1√

1 + p2

)
. (C.14)

The equation for ϕ is even a bit simpler

ϕ′ = ± 1

v2
= ± v′

(1 + v2)
√
p2 − v2

, (C.15)

which integrates to

ϕ =
1√

1 + p2
arcsin

√
1 + 1/p2

1 + 1/v2
. (C.16)

After going to the second branch the final value is

ϕ1 =
π√

1 + p2
, (C.17)

and indeed δ + ϕ1 = π, as should be the case by the supersymmetric construction of the

scalar couplings (see (2.35) and the paragraph thereafter).

As mentioned above, the Nambu-Goto action is equal (up to a sign) to the total

derivative which has to be added, so the full Lagrangian vanishes

SNG =

√
λ

2π

∫
dr

r

∫
du

−1

p u2
=

√
λ

2π

∫
dr

r

1

p u0
, (C.18)

with u0 a cutoff. Note that for small u the integrand 1/(rpu0) ∼ 1/z0 is the standard

divergence. Indeed it cancels against the Legendre transform.
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The next step is to conformally transform to global AdS with metric

ds2 = L2
[
dρ2 + sinh2 ρ(dθ2 + sin2 θdφ2) + dϕ2

]
, (C.19)

by (φ and ϕ are mapped to themselves)

cosh ρ =
1 + z2 + r2

2z
, sinh ρ sin θ =

r

z
. (C.20)

This gives the surface

cosh ρ =
1 + r2 + r2v2

2rv
, sinh ρ sin θ =

1

v
. (C.21)

The relation between v, φ and ϕ is as before, but the action will have to be calculated

again using a different regularization that should give the expectation value of the Wilson

loop with two cusps on the sphere.

Plugging in the solution into the Nambu-Goto action, it may be written in the following

form

SNG =

√
λ

2π

∫
dr

r

∫
dφ

p(1 + v2)

v4
=

√
λ

2π

∫
dr

r

∫
dv

p

v2
√
p2 − v2

=

√
λ

2π

∫
dρ dθ

p sinh2 ρ sin θ√
p2 sinh2 ρ sin2 θ − 1

.

(C.22)

This expression is simple to integrate. For a fixed ρ the variable θ varies between the two

roots of sin θ sinh ρ = 1/p, and then back. Integrating over this variable gives 2π sinh ρ, so

we are left with the ρ integration between the minimal value, where sinh ρ = 1/p and a

cutoff ρ0 at large ρ

SNG =
√
λ

∫
dρ sinh ρ =

√
λ

(
cosh ρ0 −

√
1 +

1

p2

)
. (C.23)

One may be tempted to simply throw away the divergent cosh ρ0 term, but some more

care is actually required to proceed. As we noted before, the range of the θ integration for

fixed ρ0 is not 2π, but roughly

2π − 4

p sinh ρ0
. (C.24)

So this gives the possibility of some finite corrections left over from the divergent piece.

The precise prescription for getting a finite value for the Wilson loop expectation value was

given in [61]. It is defined in the Poincaré patch, where one can resort to considerations

on the near horizon limit of D3-branes. The divergence in the bulk action is canceled by

a boundary term which is a Legendre transform of the six coordinates orthogonal to the

brane. In global AdS this translates to

Lboundary = − coth ρ0 pρ = − coth ρ0 ρ
′ δLNG
δρ′

, (C.25)

where ρ′ is the derivative of ρ with respect to the world-sheet coordinate orthogonal to the

boundary. In the limit of large ρ0 we can replace coth ρ0 → 1.
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To evaluate it in practice one has to reintroduce ρ′ into (C.22), where it was set to

one, leading to the expression

Sboundary = −
√
λ

2π

∫
dθ

√
p2 sinh2 ρ0 sin2 θ − 1

p sinh2 ρ0 sin θ

[
sinh2 ρ0(1 + sin2 θ(∂θφ)2) + (∂θϕ)2

]

= −
√
λ

2π

∫
dθ sin θ

p2 sinh2 ρ0(sinh2 ρ0 sin2 θ + 1) − cosh2 ρ0

p(sinh2 ρ0 sin2 θ + 1)
√
p2 sinh2 ρ0 sin2 θ − 1

.

(C.26)

The first term in the numerator cancels part of the denominator giving the same integral

over θ as in (C.22), which is equal to 2π sinh ρ0. The second term, with cosh2 ρ0 in the

numerator integrates to a finite answer such that the final result for the boundary term is

Sboundary ≃ −
√
λ

(
sinh ρ0 −

coth ρ0

p
√

1 + p2

)
. (C.27)

Combining this with the bulk action (C.23), the divergences indeed cancel and we get

the final answer for the action of the string dual to the two-longitudes Wilson loop

S = − p√
1 + p2

√
λ = −

√
λ δ(2π − δ)

π
. (C.28)

In the last equality we used (C.14) to represent p in terms of δ.

Non-BPS case. For completion we consider here the case of the general non-

supersymmetric cusp in the plane with opening angle δ and arbitrary jump in the scalar

coupling ϕ1. This calculation is not used in the main text, as this loop is not BPS, but it

was left unsolved in [61] and is a simple generalization of the BPS case.

In the supersymmetric case the ratio of the two conserved charges J and E in (C.8)

was ±1. In the non-supersymmetric case it is still simple and we denote it by q

q ≡ J

E
= v2ϕ′ . (C.29)

Using this we find the differential equation for v

v′2 =
1 + v2

v4
[p2 + (p2 − q2)v2 − v4] , p =

1

E
. (C.30)

This is an elliptic equation. To see that define

ζ =

√
v2(1 + b2)

b2(1 + v2)
, b2 =

1

2

(
p2 − q2 +

√
(p2 − q2)2 + 4p2

)
. (C.31)

Then ζ satisfies

ζ ′2 =
p2

b2

(
1 − 1 + b2

b2ζ2

)2

(1 − ζ2)(1 − k2ζ2) , k2 =
b2(p2 − b2)

p2(1 + b2)
. (C.32)
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Therefore the relation between ζ and φ is given in terms of incomplete elliptic integrals of

the first and third kind F and Π with argument arcsin ζ and modulus k

φ =
b

p
√

1 + b2

[
F (arcsin ζ; k) − Π

(
b2

1 + b2
, arcsin ζ; k

)]
. (C.33)

At the boundary v = 0 so also ζ = 0. It reaches a maximal value ζ = 1 beyond which

another copy of the surface continues with

φ =
b

p
√

1 + b2

[
2K(k) − 2Π

(
b2

1 + b2
; k

)
− F (arcsin ζ; k) + Π

(
b2

1 + b2
, arcsin ζ; k

)]
.

(C.34)

The final value of φ when we reach the boundary again is twice the complete elliptic

integrals

δ =
2b

p
√

1 + b2

[
K(k) − Π

(
b2

1 + b2
; k

)]
. (C.35)

Integrating ϕ leads to an even simpler expression in terms of elliptic integrals of the

first kind

ϕ =

∫
dφ

q

v2
=

q b

p
√

1 + b2
F (arcsin ζ; k) . (C.36)

The final value of ϕ is again related to the complete integral

ϕ = 2
q b

p
√

1 + b2
K(k) . (C.37)

Then we can calculate the classical action

S =

√
λ

2π

∫
dr dφ

p

r

1 + v2

v4
(C.38)

=

√
λ

2π

∫
dr

r

√
1 + b2

b

[
−
√

(1 − ζ2)(1 − k2ζ2)

ζ
+ [F (arcsin ζ; k) − E(arcsin ζ; k)]

]
,

where E denotes an elliptic integral of the second kind. The right hand side should be

evaluated at the two boundaries where ζ = 0 (on the two branches). The result is

SNG =

√
λ

2π

∫
dr

r

√
1 + b2

b

[
2

ζ0
+ 2 [K(k) − E(k)]

]
. (C.39)

Here ζ0 is a cutoff at small ζ, so the first term is equal to

√
λ

2π

∫
dr

2
√

1 + b2

b rζ0
=

√
λ

2π

∫
dr

2

z0
, (C.40)

where z0 is a cutoff on z, and this is the standard divergence for the two rays making the

cusp. The divergence is canceled as usual by a boundary term.
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C.3 Toroidal loops

We describe now the toroidal loops introduced in section 2.4 and section 2.5. We perform

the calculation in the general case where the radii of the loops r1 and r2 are independent

of the periods k1 and k2 along the two cycles of the torus. To focus on the case of the

latitude on the Hopf base discussed in section 2.4, one should simply set

sin
θ

2
=

√
k2

k1 + k2
. (C.41)

Consider a doubly-periodic motion on S3

x1 = sin
θ

2
sin k1t , x2 = sin

θ

2
cos k1t , x3 = cos

θ

2
sin k2t , x4 = cos

θ

2
cos k2t , (C.42)

where θ is one of the Euler angles, while the other two angles are given by

φ = (k1 + k2)t , ψ = (k2 − k1)t . (C.43)

The scalar couplings for these loops are simple

1

2
σR1 =

1

2
(k1 + k2) sin θ cos(k2 − k1)t dt ,

1

2
σR2 =

1

2
(k1 + k2) sin θ sin(k2 − k1)t dt ,

1

2
σR3 =

(
k2 cos2 θ

2
− k1 sin2 θ

2

)
dt .

(C.44)

This is just a periodic motion, as in the case of the latitude on the great S2.

It is possible to find the minimal surface representing this Wilson loop in AdS5 × S5

using the techniques of [59]. There it was shown how to calculate a general periodic Wilson

loop, but the example of motion on a torus was not done explicitly.

One first notices that the AdS5 and S5 parts of the σ-model completely decouple. In

principle the two systems may be coupled because of the Virasoro constraint, which should

be satisfied on the combined system only. All the examples in [59] where this occurred

were the correlation functions of two loops. Here we have a single loop and in this case the

Virasoro constraint is indeed satisfied independently on both sides.

The solution to the equations of motion on the S5 side are like in the latitude on the

great S2 example (C.2)

sinϑ =
1

cosh[(k2 − k1)(σ0 ± σ)]
, ϕ = (k2 − k1)τ . (C.45)

The sign choice corresponds to a surface wrapping the northern or southern hemisphere

and the integration constant σ0 is chosen so that at σ = 0 it reaches the boundary value

sinϑ0 =
1

cosh[(k2 − k1)σ0]
=

(k1 + k2) sin θ

2
√
k2
1 sin2 θ

2 + k2
2 cos2 θ

2

. (C.46)
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The action for the string will be the sum of AdS5 part and of the S5 part. The latter is

just the area of the part of the sphere covered by the string (taking k2 ≥ k1)

SS5 = (k2 − k1)


1 ± k2 cos2 θ

2 − k1 sin2 θ
2√

k2
1 sin2 θ

2 + k2
2 cos2 θ

2


√

λ

=


k2 − k1 ±

√
k2
1 sin2 θ

2
+ k2

2 cos2
θ

2
∓ k1k2√

k2
1 sin2 θ

2 + k2
2 cos2 θ

2


√

λ .

(C.47)

The sign choice again corresponds to the two possible wrappings of S2.

To solve the AdS5 part it is convenient to write it as a hypersurface in flat six-

dimensional Minkowski space

−Y 2
0 + Y 2

1 + Y 2
2 + Y 2

3 + Y 2
4 + Y 2

5 = −L2 . (C.48)

Now let us define the coordinates r0, r1, r2, v, φ1 and φ2 by

Y0 = Lr0 cosh v , Y5 = Lr0 sinh v ,

Y1 = Lr1 cosφ1 , Y2 = Lr1 sinφ1 ,

Y3 = Lr2 cosφ2 , Y4 = Lr2 sinφ2 .

(C.49)

Those coordinates satisfy the constraint −r20+r21+r22 = −1, and the metric of the embedding

flat Minkowski space is

ds2 = L2
(
−dr20 + r20dv

2 + dr21 + r21dφ
2
1 + dr22 + r22dφ

2
2

)
. (C.50)

The relevant ansatz for our system of periodic motion on T 2 is

ri = ri(σ) , v = v(σ) , φ1 = k1τ + α1(σ) , φ2 = k2τ + α2(σ) . (C.51)

Furthermore we can set α1, α2 and v to be constants, leaving only the action for r0, r1,

and r2

SAdS5
=

L2

4πα′

∫
dσ dτ

[
− r′20 + r′21 + r′22 + r21k

2
1 + r22k

2
2 + Λ

(
−r20 + r21 + r22 + 1

) ]
. (C.52)

Here Λ is a Lagrange multiplier.

The equations of motion for r0, r1 and r2 are

r′′0 = Λr0 , r′′1 = (k2
1 + Λ)r1 , r′′2 = (k2

2 + Λ)r2 . (C.53)

It is simple to find the first integral of motion, it is the diagonal component of the AdS5

contribution to the stress-energy tensor

−r′20 + r′21 + r′22 − k2
1r

2
1 − k2

2r
2
2 = 0 . (C.54)

Using the Virasoro constraint, the classical action is twice the kinetic piece

SAdS5
= 2SkineticAdS5

=

√
λ

2π

∫
dσ dτ

(
r21k

2
1 + r22k

2
2

)
. (C.55)
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The other integrals of motion are

I0 =r20 −
1

k2
1

(r0r
′
1 − r1r

′
0)

2 − 1

k2
2

(r0r
′
2 − r2r

′
0)

2 ,

I1 =r21 −
1

k2
1

(r0r
′
1 − r1r

′
0)

2 +
1

k2
1 − k2

2

(r1r
′
2 − r2r

′
1)

2 .

(C.56)

We can define I2 in a similar fashion, but it is not an independent integral, since −I0 +

I1 + I2 = −1.

We know that the range of the world-sheet coordinate σ is infinite (from the S5 part

of the solution), and that for large σ both r1 and r2 vanish (as well as their derivatives),

while r0 → 1. From this we easily conclude that the integration constants are I0 = 1 and

I1 = I2 = 0.

To solve these equations we define the coordinates ζ1 and ζ2 which are the roots of the

equation
r20
ζ2
i

− r21
ζ2
i − k2

1

− r22
ζ2
i − k2

2

= 0 , (C.57)

and we find

r0 =
ζ1ζ2
k1k2

, r1 =

√
(ζ2

1 − k2
1)(ζ

2
2 − k2

1)

k2
1(k

2
2 − k2

1)
, r2 =

√
(ζ2

1 − k2
2)(ζ

2
2 − k2

2)

k2
2(k

2
1 − k2

2)
. (C.58)

The integrals of motion I0 and I1 lead to the equations

ζ ′1 = ±(ζ2
1 − k2

1)(ζ
2
1 − k2

2)

ζ2
1 − ζ2

2

, ζ ′2 = ±(ζ2
2 − k2

1)(ζ
2
2 − k2

2)

ζ2
1 − ζ2

2

. (C.59)

The ratio of those two equations is then simple to integrate. If we assume without loss of

generality that k1 < k2, then it turns out that for our system we can take k1 ≤ ζ1 ≤ k2 ≤ ζ2
and in the first equation in (C.59) there should be the negative sign while in the second

the positive one. The solution is given in terms of a constant c

k1 arctanh
ζ1
k2

− k2 arccoth
ζ1
k1

+ k1 arccoth
ζ2
k2

− k2 arccoth
ζ2
k1

= c . (C.60)

or (
(ζ1 − k1)(ζ2 + k1)

(ζ1 + k1)(ζ2 − k1)

)k2 ((k2 + ζ1)(ζ2 − k2)

(k2 − ζ1)(ζ2 + k2)

)k1
= C . (C.61)

Note that this solution is valid for any torus. The radii sin θ/2 and cos θ/2 are en-

coded in the asymptotic values of r1 and r2 whose ratio should approach tan(θ/2).

In terms of the ζ’s, this corresponds to one of them (ζ1) approaching the constant

k1k2/
√
k2
1 sin2(θ/2) + k2

2 cos2(θ/2), while ζ2 diverges.

So our solution has ζ1 starting at this constant near the boundary of AdS5 and de-

creasing to k1, while ζ2 will start at infinity and decrease to k2. The constant C in (C.61)

is 

k2 −

√
k2
1 sin2 θ

2 + k2
2 cos2 θ

2

k2 +
√
k2
1 sin2 θ

2 + k2
2 cos2 θ

2



k2


√
k2
1 sin2 θ

2 + k2
2 cos2 θ

2 + k1
√
k2
1 sin2 θ

2 + k2
2 cos2 θ

2 − k1



k1

. (C.62)
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Is is not easy to solve for the ζ’s (or r’s) in terms of σ, but that turns out not to be

necessary. The action can be evaluated without that

SAdS5
=

√
λ

2π

∫
dσ dτ (−r′20 + r′21 + r′22 )

=
√
λ

∫
dσ

(
ζ ′21 (ζ2

2 − ζ2
1 )

(ζ2
1 − k2

1)(k
2
2 − ζ2

1 )
+

ζ ′22 (ζ2
2 − ζ2

1 )

(ζ2
2 − k2

1)(ζ
2
2 − k2

2)

)

= −
√
λ



∫ k1

k1k2√
k2
1

sin2 θ
2
+k2

2
cos2 θ

2

dζ1 +

∫ k2

∞
dζ2




≃ −
√
λ


k1 + k2 −

k1k2√
k2
1 sin2 θ

2 + k2
2 cos2 θ

2


 .

(C.63)

In the last expression the divergence was removed.

Together with the S5 part (C.47) one gets the total action

S =


−2k1 ±

√
k2
1 sin2 θ

2
+ k2

2 cos2
θ

2
+ (1 ∓ 1)

k1k2√
k2
1 sin2 θ

2 + k2
2 cos2 θ

2


√

λ . (C.64)

D. Almost complex structure for S2 and S6

In this appendix we provide an alternative, more geometrical understanding of the origin

of the almost complex structure J . The main clue comes from observing that our string

solutions satisfy

x2 + z2 = 1 , (D.1)

and therefore reside inside an AdS4 ×S2 subspace of AdS5 ×S5 . It is then natural to look

for an almost complex structure on this subspace. To understand how this observation can

help we note that we could rewrite equation (D.1) as xµxµ + z4yiyi = 1, which, up to a z

factor, is analogous to the equation of a 6-sphere embedded in (xµ, yi). It will be therefore

insightful to review how we can construct an almost complex structure on S6 in R
7. To

understand how to proceed let us begin with a simpler case, which is the construction of

an almost complex structure on S2. This structure is by definition a linear endomorphism

on the tangent space of the sphere which satisfies

J : TS2 → TS2, J2 = −1. (D.2)

In terms of the usual embedding of the sphere in R
3 let us consider the following linear

operator

J =




0 −x3 x2

x3 0 −x1

−x2 x1 0


 . (D.3)

This J defines an almost complex structure on S2. To see that we first observe that J

is a well defined map on TS2 because for any ~p = (p1, p2, p3) in the tangent space of
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~x = (x1, x2, x3) we have J(~p) · ~x = 0. This says that J(~p) is orthogonal to ~x and therefore

J maps tangent vectors into tangent vectors. For J to be an almost complex structure it

remains to prove that it squares to minus the identity, and indeed

J2(p) =




−p1 + x1 x · p
−p2 + x2 x · p
−p3 + x3 x · p


 = −



p1

p2

p3


 . (D.4)

Note that the action of J on ~p can be simply thought of as the cross product ~x× ~p .

Let us try to extend this construction. It is a fact that the only spheres which admit

an almost complex structure are S2 (in which case J is also integrable) and S6.22 The

construction of an almost complex structure for the latter case can be carried over in

analogy to what done for the unit 2-sphere if we work with the octonion algebra O. An

octonion element can be written as

x = x0 + x1e1 + x2e2 + x3e3 + x4e4 + x5e5 + x6e6 + x7e7 (D.5)

where the algebra generators satisfy

e2
i = −1, eiej = −ej ei. (D.6)

We can think of S6 as the hypersurface |x| = 1 with x ∈ Im O, the imaginary octonions

being obtained by setting x0 = 0. We will see that S6, when considered as the set of

unit norm imaginary octonions, inherits an almost complex structure from the octonion

multiplication [81].

If we want to construct an almost complex structure on S6 using the analogy with S2

we need to define a cross product. Luckily a cross product between two vectors, satisfying

all the usual assumptions, exists only in dimensions 3 and 7. The cross product between

two octonions x and y is defined as

x× y =
1

2
(xy − yx) = Im (xy) (D.7)

where xy is the non-commutative and non-associative octonion product. If we work with

imaginary octonions the cross product reduces to the ordinary octonion multiplication.

The claim is that an almost complex structure J can be constructed as

J = x× p , x ∈ S6, p ∈ TxS
6 (D.8)

where x = (x1, x2, x3, x4, x5, x6, x7) and p = (p1, p2, p3, p4, p5, p6, p7) are thought of as

imaginary octonions. Using a particular choice23 for the multiplication table one gets the

22It is widely believed, but not proved, that S6 does not admit a complex structure.
23There is not a universal choice for the octonion multiplication table. The one used here has been chosen

to highlight the similarities with the almost complex structure J relevant to the discussion of the string

solutions.
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following matrix

J =




0 −x7 x6 x5 −x4 −x3 x2

x7 0 −x5 x6 x3 −x4 −x1

−x6 x5 0 x7 −x2 x1 −x4

−x5 −x6 −x7 0 x1 x2 x3

x4 −x3 x2 −x1 0 x7 −x6

x3 x4 −x1 −x2 −x7 0 x5

−x2 x1 x4 −x3 x6 −x5 0




(D.9)

In complete analogy to the S2 case we can show that J defines linear endomorphism on

the tangent space and that J2(p) = −p for any tangent vector p. This proves we have

constructed an almost complex structure on the unit 6-sphere. Using a notation similar

to (3.20) we can write the matrix J ij as

J ij = J ij; k x
k. (D.10)

Note that up to z factors, J coincides with the almost complex structure J associated

to the Wilson loops, see (3.23), after the relabeling x5 → −y1, x6 → −y2, x7 → −y3. The

corresponding fundamental two-form reads24

J =
1

2
JMN dx

M ∧ dxN

= x1(dx72 + dx36 + dx45) + x2(dx17 + dx53 + dx46) + x3(dx61 + dx25 + dx47)

+x4(dx51 + dx62 + dx73) + x5(dx14 + dx32 + dx67) + x6(dx13 + dx24 + dx75)

+x7(dx21 + dx34 + dx56). (D.11)

Note that, as was the case for J , this two-form is not closed but rather we have

dJ = 3(dx172 + dx136 + dx145 + dx325 + dx246 + dx347 + dx567). (D.12)

This form is the associative three-form φ preserved by the G2 group. The explanation for

the appearance of φ in this context is that G2 ⊂ SO(7) is the automorphism group of the

octonions.25 The reason for which dJ 6= 0 is the well known fact that S6 is not Kähler.

E. 2-dimensional YM in the WML ξ = −1 gauge

In this appendix we present an explicit computation in the ξ = −1 generalized Feynman

gauge with WML prescription for the two-dimensional near-flat limit discussed in sec-

tion 4.1.1. Since we know that the non-interacting graphs from our Wilson loops in four

dimensions in the Feynman gauge agree with the 2-dimensional propagators in this gauge,

we turned to the first interacting graphs, which appear at order λ2.

While we were not able to find agreement between the interacting graphs in four di-

mensions and two dimensions for a general loop, we present the calculation here nonetheless

24dxµν = dxµ ∧ dxν and dxµνρ = dxµ ∧ dxν ∧ dxρ.
25Also note that S6 = G2/SU(3).
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in the hope that it would aid in future explorations of the subject. To get some concrete

results we focused on the one case where the interacting graphs were calculated in four

dimensions — the circular loop. In this special example the two propagators in the ξ = −1

gauge sum up to the (single) propagator in the light-cone gauge, hence the ladder diagrams

in the two gauges are equal. In the light-cone gauge there are no interactions and therefore

in our gauge the interaction graphs for the circle should all cancel, which we indeed verify.

We start by deriving the Feynman rules in this generalized gauge in the near-flat limit.

The Euclidean action reads

L =
1

g2
2d

[
1

4
(F ars)

2 +
1

2ξ
(∂rA

a,r)2 + ∂rb
a (Drc)a

]
, (E.1)

where r, s = 1, 2 and

F ars = ∂[rA
a
s] + fabcAbr A

c
s , (Drc)

a = ∂rc
a + fabcAbr c

c . (E.2)

Choosing the gauge ξ = −1 and using the light-cone coordinates x± = 1
2(x1 ± ix2) (so that

the metric is g+− = 2) the action becomes

L =
1

g2
2d

[
− 1

4
(∂+A

a
−)2 − 1

4
(∂−A

a
+)2 − ba∂+∂−c

a

+
1

4
fabc(∂+A

a
− − ∂−A

a
+)Ab−A

c
+ − 1

8
fabcfadeAb+A

c
−A

d
+A

e
−

+
1

2
fabc(∂+b

a)Ab−c
c +

1

2
fabc(∂−b

a)Ab+c
c

]
. (E.3)

The propagators for the gauge fields in the WML prescription are then

∆ab
++(x, y) ≡ δab∆++(x, y) = δab

g2
2d

2π

x− − y−

x+ − y+
,

∆ab
−−(x, y) ≡ δab∆−−(x, y) = δab

g2
2d

2π

x+ − y+

x− − y−
, (E.4)

where the normalization is fixed by requesting

1

2g2
2d

∂2
x−∆++(x, y) = δ2(x− y) , (E.5)

and similarly for ∆−−. For the ghosts one has

∆ab
gh(x, y) ≡ δab∆gh(x, y) = −δab g

2
2d

4π
log(x− y)2 . (E.6)

The vertices can be easily read off from the action.

E.1 Three-point graphs

We now write down the interacting graphs starting with the ones with an internal 3-vertex.

On the loop there can be two A+’s and one A− or two A−’s and one A+. These two cases

are one the complex conjugate of the other so it is sufficient to compute only one of them,
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say the first one, which we denote Σ
(3)
++−. Expanding the action e−S to first order and the

Wilson loop to third order, one obtains after performing all the Wick contractions

Σ
(3)
++− = − i3

3!N

1

4g2
2d

iN(N2 − 1)

4

∮
dτ1dτ2dτ3 ε(τ1τ2τ3)

∫
d2y×

×
{
ẋ+

1 ẋ
+
2 ẋ

−
3 ∆−−(y, x3)

[
∆++(y, x2)∂y−∆++(y, x1) − ∆++(y, x1)∂y−∆++(y, x2)

]

−(1 ↔ 3) − (2 ↔ 3)

}
. (E.7)

Here we have used that Tr (T aT bT c)fabc = i
4N(N2 − 1) and the symbol ε(τ1τ2τ3) enforces

the path ordering through the antisymmetrization of τ1, τ2, and τ3.

We now proceed with the integration over y. The first term in curly brackets can be

explicitly written (up to the ẋ+
1 ẋ

+
2 ẋ

−
3 structure and the constant factors in the propagators

which we do not include) as

∫
d2y

(y+ − x+
3 )(x−1 − x−2 )

(y− − x−3 )(y+ − x+
1 )(y+ − x+

2 )
=

=
x−1 − x−2
x+

1 − x+
2

∫
d2y

(
x+

1 − x+
3

(y− − x−3 )(y+ − x+
1 )

− x+
2 − x+

3

(y− − x−3 )(y+ − x+
2 )

)
. (E.8)

It is convenient to parametrize the position of the vertex as y± ≡ ρ
2e

±iφ. The integrals in

φ are of the type
∫ 2π

0

dφ

(e−iφ − a) (eiφ − b)
=

2π

ab− 1
[ϑ(|a| − 1) − ϑ(1 − |b|)] , (E.9)

where a, b ∈ C and ϑ is the step function. This identity can be easily proven starting from
∫ 2π

0

dφ

eiφ − a
= −2π

a
ϑ(|a| − 1) . (E.10)

After integrating over φ, equation (E.8) becomes

8π
(x−1 − x−2 )(x+

1 − x+
3 )

x+
1 − x+

2

∫ R

0

ρ dρ

4x−3 x
+
1 − ρ2

[ϑ(r(τ3) − ρ) − ϑ(ρ− r(τ1))] − (1 ↔ 2) , (E.11)

where we have introduced an IR cutoff R and parametrized x±i ≡ r(τi)
2 e±iτi . For conve-

nience, we will use in the following the shorthand notation ri ≡ r(τi). The integral above

can be easily performed and yields

4π
(x−1 − x−2 )(x+

1 − x+
3 )

x+
1 − x+

2

log

(
R2 − 4x−3 x

+
1

r21 + r23 − 2r1r3 cos τ13

)
− (1 ↔ 2) , (E.12)

where we have also introduced the notation τij ≡ τi − τj . Including all the prefactors in

equation (E.7) and summing over the permutations yields the final result

Σ
(3)
++− = − λ2

3!32π2

∮
dτ1dτ2dτ3 ε(τ1τ2τ3)

[
ẋ+

1 ẋ
+
2 ẋ

−
3

x−1 − x−2
x+

1 − x+
2

(
(x+

1 − x+
2 ) logR2 + (E.13)

+(x+
3 − x+

1 ) log(x3 − x1)
2 + (x+

2 − x+
3 ) log(x2 − x3)

2
)
− (1 ↔ 3) − (2 ↔ 3)

]
,
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where we have expanded at large R and neglected terms of order 1/R2. Adding the complex

conjugate of this expression gives the total contribution of the 3-vertex graphs for a general

curve.

We can now specialize to the case of the circular loop x± = 1
2e

±iτ (for simplicity we

take a circle of unit radius, one could reinsert an arbitrary radius at the end by dimensional

analysis). In this case, the above expression yields

Σ
(3)
++− = − λ2

3!256π2

∮
dτ1dτ2dτ3 ε(τ1τ2τ3)

[
(sin τ21 + sin τ32 + sin τ13) logR2 + (E.14)

+ sin τ12 log(2 − 2 cos τ12) + sin τ23 log(2 − 2 cos τ23) + sin τ31 log(2 − 2 cos τ13)
]
,

Since the expression in square brackets is totally antisymmetric in τ1, τ2, and τ3, one can

choose a fixed ordering of the τ ’s, say τ1 ≥ τ2 ≥ τ3, and multiply by 3!. The finite terms

not containing the logR2 integrate to zero and the final result is Σ
(3)
++− = λ2

32 logR. The

total contribution of the three-point interaction graphs in the case of the circle is then

Σ(3) = Σ
(3)
++− + Σ

(3)
−−+ =

λ2

16
logR . (E.15)

E.2 Self-energy graphs

We now compute the gluon self-energy graphs. We need to consider the 1-loop corrections to

the Σ
(2)
++ and Σ

(2)
+− graphs and their complex conjugates. These graphs receive contributions

from both gauge fields and ghosts running in the loop and are obtained by expanding the

Wilson loop to quadratic order in the gauge fields.

We start with the Σ
(2)
++ graph. The ghost contribution reads

Σ
(2)
++(ghost) =

1

2

i2

N

(
1

2g2
2d

)2(g2
2d

4π

)2(
g2
2d

2π

)2 −N(N2 − 1)

2
× (E.16)

×
∫

τ1≥τ2
dτ1dτ2

∫
d2y d2w

ẋ+
1 ẋ

+
2

(y− − w−)2

{
(y− − x−1 )(w− − x−2 )

(y+ − x+
1 )(w+ − x+

2 )
+(1 ↔ 2)

}
,

where the first factor of 1/2 comes from the Taylor expansion of e−S . The gauge field run-

ning in the loop contributes with three graphs: One graph with a 4-vertex and two graphs

with two 3-vertices. In the first one of these two graphs with 3-vertices the propagators in

the loop are a ∆++ and a ∆−−, whereas in the second one they are two ∆−−’s.

We find that the seagull graph is given by the following expression

Σ
(2)
++(seagull) = − i2

N

(
− 1

8g2
2d

)(
g2
2d

2π

)3

N(N2 − 1) × (E.17)

×
∮

τ1≥τ2
dτ1dτ2

∫
d2y ẋ+

1 ẋ
+
2

(y+ − y+)(y− − x−1 )(y− − x−2 )

(y− − y−)(y+ − x+
1 )(y+ − x+

2 )
,

where we used the formal expression (y+ − y+)/(y− − y−) to indicate the propagator in

the limit of coincident points.
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The graph with internal ∆++ and ∆−− propagators reads

1

2

i2

N

(
1

4g2
2d

)2(g2
2d

2π

)4
N(N2 − 1)

2

∫

τ1≥τ2
dτ1dτ2

∫
d2y d2w ẋ+

1 ẋ
+
2 ×

×
{
x−1 − x−2
y− − w−

(
1

(y+ − x+
1 )(w+ − x+

2 )
− (1 ↔ 2)

)
+

+
y+ − w+

y− − w−

(
(y− − x−1 )(w− − x−2 )

(y+ − x+
1 )(w+ − x+

2 )
+ (1 ↔ 2)

)
∂y−∂w−

(
y− − w−

y+ − w+

)}
.

(E.18)

The second graph with two ∆−− propagators gives a term which exactly cancels the ghost

contribution equation (E.16) and another term which is equal to the last term in equa-

tion (E.18) except that the factor

∂y−∂w−

(
y− − w−

y+ − w+

)
(E.19)

is replaced by its complex conjugate. Let us write these two terms more explicitly

∂y−∂w−

(
y− − w−

y+ − w+

)
+ c.c. = −∂2

y−

(
y− − w−

y+ − w+

)
+ c.c. = −8πδ2(y − w) , (E.20)

where we have used equation (E.5) and its complex conjugate. This term containing the δ

function cancels then the seagull contribution (E.18).

Similarly for Σ
(2)
+− one finds that the ghost contribution is given by

Σ
(2)
+−(ghost) =

i2

N

(
1

2g2
2d

)2(g2
2d

4π

)2(
g2
2d

2π

)2 −N(N2 − 1)

2
× (E.21)

×
∫

τ1≥τ2
dτ1dτ2

∫
d2y d2w

ẋ+
1 ẋ

−
2 (y− − x−1 )(w+ − x+

2 )

(y+ −w+)(y− − w−)(y+ − x+
1 )(w− − x−2 )

.

As for the gluons running in the loop, now only the graph with two 3-vertices, one ∆++

and a ∆−− contributes (there is no seagull graph contributing to Σ
(2)
+−). This is given by

Σ
(2)
+−(gluon) =

i2

N

(
1

4g2
2d

)2(g2
2d

2π

)4
N(N2 − 1)

2
× (E.22)

×
∫

τ1≥τ2
dτ1dτ2

∫
d2y d2w

ẋ+
1 ẋ

−
2 (y+−x+

2 )(w− − x−1 )

(y+ − w+)(y− − w−)(y+ − x+
1 )(w− − x−2 )

.

Putting together all the pieces one obtains

Σ
(2)
++ + Σ

(2)
+− =

i2

N

(
1

4g2
2d

)2(g2
2d

2π

)4
N(N2 − 1)

2

∫

τ1≥τ2
dτ1dτ2

∫
d2y d2w×

×
{
ẋ+

1 ẋ
+
2

2

x−1 − x−2
y− −w−

(
1

(y+ − x+
1 )(w+ − x+

2 )
− (1 ↔ 2)

)
+ (E.23)

+ẋ+
1 ẋ

−
2

(
y−−x−1

(y−−w−)(y+−x+
1 )(w−−x−2 )

− y+ − x+
2

(y+−w+)(y+−x+
1 )(w−−x−2 )

)}
.
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Adding the complex conjugate of this expression gives the total contribution of the self-

energy graphs.

We start by evaluating the first term in equation (E.23), corresponding to Σ
(2)
++. As

before, we use polar coordinates for the integration over the internal vertices, by defining

y± = ρ
2e

±iφ and w± = ξ
2e

±iψ. The generic loop is parameterized as x±i = ri
2 e

±iτi , where

ri ≡ r(τi). Computing first the integrals over φ and ψ with the help of (E.9), we get
∫
d2y d2w

1

(y− − w−)(y+ − x+
1 )(w+ − x+

2 )
=

= 16π2

∫ R

0

∫ R

0

ρξ dρ dξ

x+
1 ξ

2 − x+
2 ρ

2

[
ϑ(ρ− ξ) − ϑ(ξ − r2)

][
ϑ(ξ2 − r2ρ) − ϑ(ρ− r1)

]

= −16π2

[ ∫ R

r2

dξ

∫ ξ

0
dρ+

∫ R

r1

dρ

∫ ρ

0
dξ −

∫ R

r1

dρ

∫ R

r2

dξ

]
ρξ

x+
1 ξ

2 − x+
2 ρ

2
, (E.24)

where R is the large distance cutoff. The remaining integrals can be easily performed.

Expanding at large R, one finds that quadratic divergences cancel and the final result for

the integral in equation (E.24) is

16π2(x−1 − x−2 )

(
logR2 + 1 − log(r21 + r22 − 2r1r2 cos τ12)

)
+ O

(
1

R2

)
. (E.25)

Including all the prefactors in equation (E.23) as well as the contribution obtained by

exchanging x1 and x2, we thus obtain

Σ
(2)
++ = − λ2

32π2

∫

τ1≥τ2
dτ1dτ2 ẋ

+
1 ẋ

+
2 (x−1 − x−2 )2

(
logR2 + 1 − log(x1 − x2)

2

)
. (E.26)

We integrate now the second term in equation (E.23), which corresponds to Σ
(2)
+−. We

proceed as before by first integrating over φ and ψ using identities analogous to (E.9), and

then we integrate over the radial directions ρ and ξ with an IR cutoff R. After expanding

at large R the final result for the integrals on the internal vertices is
∫
d2y d2w

(
y− − x−1

(y− − w−)(y+ − x+
1 )(w− − x−2 )

− y+ − x+
2

(y+ −w+)(y+ − x+
1 )(w− − x−2 )

)
=

= 8π2

[
R2 − (r21 + r22 − 2r1r2 cos τ12) logR2+

+(r21 + r22 − 2r1r2 cos τ12) log(r21 + r22 − 2r1r2 cos τ12) + 6x−1 x
+
2 − r21 − r22

]
.(E.27)

The quadratic divergence appearing here cancels out for a general curve once we sum the

contribution of the complex conjugate graph Σ
(2)
−+. Indeed, the R2 term is then proportional

to ∫

τ1≥τ2
dτ1dτ2

(
ẋ+

1 ẋ
−
2 + c.c.

)
=

1

2

∫

τ1≥τ2
dτ1dτ2 ẋ1 · ẋ2 = 0 . (E.28)

Including the prefactors in (E.23), we thus get

Σ
(2)
+− + Σ

(2)
−+ = − λ2

64π2

∫

τ1≥τ2
dτ1dτ2 ẋ

+
1 ẋ

−
2

[
− (x1 − x2)

2 logR2+

+ (x1 − x2)
2 log(x1 − x2)

2 + 6x−1 x
+
2 − r21 − r22

]
+ c.c.

(E.29)
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We now specialize to the circle x±i = 1
2e

±iτi . From (E.26) we readily obtain

Σ
(2)
++ + Σ

(2)
−− = − λ2

128π2

∫ 2π

0
dτ1

∫ τ1

0
dτ2(1 − cos τ12)

(
logR2 + 1 − log(2 − 2 cos τ12)

)

= −λ
2

32
logR , (E.30)

while (E.29) yields

Σ
(2)
+− + Σ

(2)
−+ = − λ2

64π2

∫ 2π

0
dτ1

∫ τ1

0
dτ2

[
3

4
− cos τ12 + (E.31)

+ cos τ12(1 − cos τ12)
(
− logR2 + log(2 − 2 cos τ12)

)]

= −λ
2

32
logR .

Recalling the contribution of the 3-vertex (E.15), we see that for the circle the sum of the

interacting graphs at this order vanishes as expected

Σ(2) + Σ(3) = 0 . (E.32)
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